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and imbeddable in /l 3/,- Though

this definition has the advantage of formal correctness and even some intui-

tive justification, we do not maintain that this is the only possible defini-

tion of a theory of measurement. But when no definition is given at all it

is hardly possible to ask, let alone answer, many interesting and natural

questions. For this reason, if for no other, we are willing to commit our-

selves to the proposed definition,

Some readers may object that the definition of theories of measurement

should be linguistic rather than set-theoretical in character, since a theory

is ordinarily thought of as a linguistic entity, To be sure, many theories

of measurement have a natural formalization in first-order predicate logic

with identity, Notice, however, that first-order axioms by themselves are

not adequate, for if they admit one infinite relational system as a model

then they have models of every infinite cardinality, and it is difficult to

see how any natural connection can be established between numerical models

and models of arbitrary cardinality. Even neglecting this criticism first-

order axioms are not adequate to express properties involving arbitrary

natural numbers; for example, the fact that a relational system is finite

or that as an ordering it has Archimedean properties, Any linguistic

definition of theories which will permit expression of these more general

properties would require extensive machinery and be immediately involved

. ~ . .~ .

l/ In some contexts we shall say that the class K is a theory of
measurement of type s relative to 11 Notice that a consequence
of this definition is that if K is a theory of measurement, then
so, is every subclass of K closed under isomorphism. Moreover,
the class of all systems imbeddable in members of K is also a
theory of measurement.
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in some of the deepest problems of modern metamathematics. On the other hand,

we do not wish to give the impression that we reject any linguistic questions.

In fact, we use our set-theoretical definition as a point of departure for

asking just such questions.

On the basis of the definition of theories of measurement adopted, two

questions naturally arise, to each of which we devote a section. In the first

place, is a given class of relational systems a theory of measurement? And in

the second place, given a theory of measurement in what sense can it be axio-

matized?

We would like to record here our indebteness to Professor Alfred Tarski

whose clear and precise formulation of the mathematical theory of mOdels~

has greatly influenced our presentation. Although our theories of measure-

ment do not constitute special cases of the arithmetic classes of Tarski, the

notions are closely related, and we have made use of results and methods from

the theory of models.

2. Existence of Measurement. A simple counterexample shows that not

every class of relational systems of a given type closed under isomorphism is

a theory of measurement. Let U be the class of all relational systemsof

type < 2 > that are simple orderings. Let < AJR > be a system in if where

R well-orders A and A has a power not equal to or less than that of the

continuum. Such a relational system can be proved to exist even without the

help of the axiom of choice, but of course with aid of this axiom the existence

is obvious. By way of contradiction suppose that U is a theory of measurement

See Tarski [6].

\ \
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relative to a numerical relational system < Re,S >. From the definition it

follows that < A~R > is imbeddable in < Re,S > and that there is a numerical

assignment f mapping .A onto a subset of Re such that

xRy if and only if f(x) S f(y)

for all elements x,YEA. Let a,b be elements of A such that f(a) ~ f(b)o

From the hypothesis that R is a simple ordering~ we can assume without loss

of generality that aRb. Hence, we have f(a) S feb), and then feb) S f(a),

and finally bRa. R is antisymmetric, and so a~bo This argument shows that

the function f is one-one. Whence, A has the same power as a subset of Re,

which is impossible. This proof shows that every theory of measurement included

in the class tf contains only relational systems of power at most that of the

continuum. It is an unsolved problem of set-theory closely connected with the

continuum hypothesis whether the class cr restricted to systems of power at

most that of the continuum is actually a theory of measuremento21 At least

it can be very easily shown that c:1 so restricted is not a theory of measure-

ment relative to the system < Re,~ >, where the relation < is the usual

ordering of the real numberso~ Indeed, the exact condition that a relational

system 'in ~ must satisfy to be imbeddable in < Re,~ >, is not really

In this connection see Sierpinski [4] Section 7, page 141 ffo, in
particular Proposition C

75
' where of course different terminology

is used.

It is sufficient here to consider a relational system isomorphic to
the ordering of the ordinals of the second number class or to the
lexicographical ordering of all pairs of real numbers.

. .~

\ \
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proof of the necessity involves the axiom of choice.lI

d restricted to countable§! relational systems. It was

proved by Cantor that (1' is a theory of measurement relative to < Re,:::; >,

to formulate somewhat irreverently his classical result in the terminology

of this paper. This restriction to countable relational systems is always

sufficient. For it can be shown that the class of all countable relational

systems of a given type is a theory of measurement; however, the numerical

relational system required is so bizarre as to be of no practical value.

One of the aims of measurement is to provide a means of convenient

computation. But among the morass of all possible numerical relational

systems only a very few are of any computational value, indeed only those

definable in terms of the ordinary arithmetical notions. From an empirical

standpoint most sets of qualitative data can find numerical interpretation

by relations defined in terms of addition and ordering alone. By way of

example we may cite the measurement of masses, distances, sensation intensi-

ties, and subjective probabilities. Frequently the consideration of weighted

averages requires also the use of the multiplication of numbers. However, in

the examples given in this paper we shall restrict ourselves to the notions

of addition and ordering.

No natural scientific situation would seem strictly to require the con-

sideration of sets of infinite data. This state of affairs suggests that

theories of measurement containing only finite relational systems would

A simple ordering is imbeddable in < Re,< > if and only if it
contains a countable dense subset. For the exact formulation and
a sketch of a proof see Birkhoff [11, pp. 31-32, Theorem 2.

The word 'countable' means at most denumerable and it refers to
the cardinality of the domains of the relational systems.

.~ .
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suffice for empirical purposes. The problem is delicate, however, fOr the

measurement of a meteorological quantity such as temperature by an automatic

recording device is usually treated as continuous both in its own scale and

in time. Yet the important problem of measurement does not really lie in

the correct use of such recording devices but rather in their initial calibra-

tion, a process proceeding from a finite number of qualitative decisions.

Because of the akwardness of the uniform application of finite relational

systems, we shall not generally make this restriction.

Further remarks about establishing the existence of measurement are best

motivated by reference to a concrete example. In a recent paper2/ R. D. Luce

has introduced a generalization of simple orderings which he calls semiorders.

Asemiorder is a relational system < A,P > of type < 2 > which satisfies

the following axioms for all x,y,z,wEA:

S1. Not xPx.

.,:, .

82.

83·

If xPy and

If xPy and

zPw, then either xPw or

zPx, then either wPy or

zPy.

zPw. 10/

Such relations are most likely to occur in situations where objects are

to be arranged in order and where it is difficult to say exactly when two

objects are indifferent. For example, to say that xPy might be interpreted

as meaning that the pitch of the sound x is definitely higher than the pitch

See Luce [3].

See Luce [3] Section 2, p. 181. The axioms given here are actually
a simplification of those given by Luce.

\

..... '
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of y, or that the hue of color x is definitely brighter than the hue of color

y, or that the weight of the object x is noticeably greater than that of y,

etc. Indifference between two objects x and y (in symbols~ xIy) is defined

as not xPy, and not yPx. The point of Luceis axioms is that the relation I

of indifference is not always transitive, a fact easily appreciated for each of

the intuitive interpretations given above.

In his paper Luce gives a certain numerical interpretation for certain kinds

of semiorders, but he does not show that any particular class of semiorders is

a theory of measurement in the sense used here, because his interpretations

are not relative to a fixed numerical relation. In the denumerable case the

situation is very simple indeed. Let » be the relation between real numbers

defined by the condition

x »y if and only if x > y + L

Obviously, if x and yare real numbers such that x» y, then x is

definitely greater than y or better x is noticeably greater than y. The

following result is not difficult to establish.

The class of countable semiorders is ~ theory of measurement relative to

the numerical relational system < Re ,» > (which is itself ~ semiorder).

It is possible to characterize all semiorders imbeddable in < Re, » > ,

similar to the result for simple orderings, but this shall not concern us here.

For the remainder of this discussion let C be the class of all count-

able semiorders. The class C affords an example of a theory of measurement

(relative to < Re, » » for which not all numerical assignments are one-

one functions. ll/ However, this theory has the peculiarity that those systems

For example, consider any semiorders in which any two elements are
indifferent.

...... -

\
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having only one-one assignments can be distinguished by a simple additional

axiom. Let < A,P > be any semiorder. Define a relation E between elements

of A by the condition

xEy

yIz

if and only if for all

are equivalent.

z E. A the formulas xlz and

The relation E is easily proved to be an equivalence relation, and, in fact,

it is a congruence relation in the sense that for all x,y,z E.A

if xPz and xEy then yPz, and

if zpx and xEy, then zPy.

Furthermore, we can show that if f is any numerical assignment imbedding

< A,P > in < Re,» > then for all x,y E.A, if f(x) = f(y), then xEy,

Consider then the axiom:

84. If xEy, then x = y.

Let C* be the class of all systems in C which satisfy 84. Clearly from

our remarks above it follows that any system in C* has only one-one

numerical assignments, In the other direction, assume that < A,P > is a

system C possessing only one-one assignments. Since the relation E is a

congruence relation for the system < A,P >, we can reduce by E and form

a system of cosets < A*,P* >, where A* is the family of eqUivalence clasoc~

under E, and p* is defined in the natural way, Obviously < A*,P* > is

in C* and < A,P > is imbeddable in < A*,P* > (in fact, < A*,P* > is a

homomorphic image of < A,P ». Let f* be any assignment for < A*,P*>,

In a straightforward way we can define an assignment f for < A,P > such

\

. -"..•

. ~ .
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that f(x) = f*([x]), where xEA and [x] is the E-equivalence class of

x. Now by assumption f is one-one. Hence if xEy, then [x] = [y], and so

f*([x]) = f*([y]), which implies f(x) = f(y) and x = y. Thus < A,P > it­

self satisfies 84. We have shown that C* is exactly the class of all systems

in C possessing only one-one assignments.

To be truthful, the above discussion has somewhat inverted the natural

sequence of steps. In order to establish the existence of measurement for C

(that is, to show that C is a theory of measurement relative to < Re ,» > ),

it is far better to consider the class c* first and prove that it is a theory

of measurement relative to < Re ,» >. Finally it need only be remarked that

every system in C can be imbedded in a system of C* by the method of cosets.

As a matter of fact it can also be proved that every system in C is a sub­

system of some system in C*, which is another method of proving that C is a

theory of measurement.

Let us now summarize the steps in establishing the existence of measure­

ment using as models the simple orderings and the semiorders. First, after

one is given a class, K say, of relational systems, the numerical relational

system should be decided upon. The numerical relational system should be

naturally suggested by the structure of the systems in K, and as was remarked,

it is most practical to consider numerical systems where all the relations can

be simply defined in terms of addition and ordering of real numbers. Second,

if the proof that K is a theory of measurement is not at once obviou.s, the

cardinality of systems in K should be taken into consideration. The restric­

tion to countable systems would always seem empirically justified, and adequate

results are often possible with a restriction to finite systems. Third, the
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proof of the existence of measurement can often be simplified by the reduction

of each relational system in K by the method of cosets. One usually looks

for a uniform and natural method of introducing into each relational system

in K an equivalence relation which preserves all the relations between the

elements. Then, instead of trying to find numerical assignments for each

member of K, one concentrates only on the reduced systems. This plan was

very helpful in the case of semiorders. Instead of cosets, it is sometimes

feasible to consider imbedding by subsystems. That is to say, one considers

some convenient subclass K' C K such that every element of K is a subsystem

of some system in K'. If K' is a theory of measurement then so is K. In

the case of semiorders we could have used either ~lan~ cosets or subsystems.

After the existence of measurement has been established, there are two

questions which are often of interest: for a given relational system what

is the class of all its numerical assignments? and how can the class of all

systems isomorphic to the given system be described? These two questions

are not unrelated, though in some cases one can be answered without deciding

the other. We shall present two examples.

Consider relational systems < A,D > of type < 4 >. For such systems

we introduce the following definitions:

xRy if and only if xyDyy

xyNtzw if and only if xyDzw, zwDxy, yRz and zRy

. .n+lxyM. zw if and only if there exist

u, v E.A such that

xyMFuv and uvNtzw,



-13-

Let H be the class of all relational systems < A,D > of type < 4 > which

satisfy the following axioms for every x,y,z,u,v,w6D~

Al. If xyDzw and zwDuv then xyDuv.

A2. • xyDzw or zwDxy.

A3. If xyDzw then xzDyw.

A4. If xyDzw then wzDyx.

A5. If xRy and yzDuv then xzDuv.

;'6. There is a z € D such that xzDzy and zyDxy.

A7· If not xyDzw and not xRy then there is a u e.D such that

zwDxu, not xRu and not uRy.

A8. If xyDzw and not-_.- xRy then there are u,vE.D and an n such

that zmfvw and zuDxy .

These axioms imply that for a system < A,D > in H, the relation R

is a weak ordering of A, an" the intuitive interpretation of xyDzw in case

yRx and wRz is that the interval between x and y is not greater than

the interval between z and w. Making heavy use of the last three existence

axioms (note that A8 gives an Archimedean property to the ordering), it can

be shown that H is a theory of measurement relative to the numerical rela-

tional system < Re,6 > where 6 is the quaternary relation defined b~ the

condition.

xy6. zw if and only if x-y:s z-w

for all x,y,z,wE.Re. In addition, it can be shown that if < Ap D> is in
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are two numerical assignments of < A,D > relative to

d 1 t d b ' t "1' f t ' 121an g are re a e y a POSl lve lnear trans orma lon;--

that is, there exist a,f3 ERe with a > 0 such that for all x E:Re,

f(x) = a g(x) + f3. This gives in a certain sense the answer to the first

question above: if we know one numerical assignment of < A,D >, we know

them all. Except for very special systems in H, nothing more specific can

really be expected.

Notice that all relational systems in H are necessarily infinite. In

the next section we shall consider in detail the theory of measurement F

consisting of all finite relational systems imbeddable in < Re,6 >. Here the

situation is quite hopeless. There simply is no apparent general statement

that can be made about the relation between assignments. In as. much as any

function ~ which imbeds < Re,6 > in itself is necessarily a linear trans-

formation and conversely, it follows that if < A,D > is a system in F and

f is an assignment for < A,D >, then f composed with a linear transforma-

tion is also an assignment. The main difficulty with F is that two assign-

ments for the same system in F need not be related by a linear transformation.

The situation with regard to the class C* of semiorders introduced above

is much the same as that for F, in as much as there is no apparent relation

between assignments. However, though it seems difficult to describe all the

different finite systems in F, we can answer this question for the finite

systems in C*. The description is facilitated by the following definition.

The proofs of both these facts about H are very similar to the
corresponding proofs in Suppes and Winet [5].
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Let s = < sl, ... ,sn > and t = < tl, •.. ,tn > be two finite sequences

of positive integers of the same length n. We write st=-t to mean:

(i) s. 1 > s. for i < n,
1+ 1

(ii) t. 1> t. for i < n,
1+ 1

(iii) s. > t. for i < no
1 1

to be the relational system < A,P >, where

Let m be any integer not less than s .
n We define 01. (s, t), where srt,

m

A =: t1, ..• ,m} and the binary

relation P is defined by the condition

kP£ if and only if there is an integer i < n such that

k>s.>t.>£
1 1 -

for all k, £EA.

It is possible without much trouble to establish the following facts:

(1) O"Cm(s,t) is a semiorder;

(2) If or (s,t) satisfies axiom s4, and if Gte (s,t) is isomorphicm m

to or. mI ( S i , t I ), then m "" m', s =: s!, and t::::: t I ;

Any finite semiorder is isomorphic to a system 01. (s, t)
m

able m, s, and to

for suit-

Thus what has been accomplished is the exhibition of exactly one repre-

sentative of each isomorphism type of finite semiorders which satisfy axiom 84.

Actually, with very little more effort we could do the same for arbitrary fir:tite

semiorders. Since a system o-c (s, t) seems to be a definite object that we
m

can constructively define, we feel that this construction yields an adequate
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description of finite semiorders and answers the second of our questions.

3. Axiomatizability. Given a theory of measurement it is natural to ask

various questions about its axiomatizability, for the axiomatic analysis of

any mathematical' theory usually throws considerable light on the structure of

the theory. In particular given an extrinsic characterization of a theory of

measurement via a particular numerical relational system, it is qUite desir-

able to have an intrinsic axiomatic characterization of the theory to be able

better to recognize when a relational system actually belongs to the theory.

In view of the paucity of metamathematical results concerning the axiomatics

of higher-order theories, we shall restrict ourselves to the problem of

axiomatizing theories of measurement in first-order logic.

It is a well-known result that if a set of first-order axioms has one

infinite model, then it has models of unbounded cardinalities. Since for

the most part we are interested in one-one assignments with values in the

set of real numbers, unbounded cardinalities are hardly an asset. That is

to say: the class of all relational systems that are models of a given set

of first-order axioms is usually not a theory of measurement. To remove

such difficulties without having to understand them, we simply restrict the

cardinalities under consideration. Even a restriction to finite cardinalities

is not too strong and leads to some rather difficult questions. Thus for the

remainder of this section we shall consider only finitary theories of measure-

ment, i.e., theories containing only finite relational systems. Such a theory

is called axiomatizable if there exists a set of sentences of first-order

logic (the axioms of the theory) such that a finite rel,ational system is in

the theory if and only if the system satisfies all the sentences in the set.



A theory is finitely axiomatizable if it has a finite set of axioms. A

theory is universally axiomatizable if it has a set of axioms each of which

is a universal sentence (i.e., a sentence in prenex normal form with only

universal quantifiers).

It should be observed first that any finitary theory of measurement is

axiomatizable. This is no deeper than saying that in first-order logic we

can write down a sentence completely describing the isomorphism type of each

finite relational system in the given theory, and clearly these sentences can

serve as the required set of axioms. It is of course quite obvious that we

cannot give in each instance an effective method for writting down the axioms,

since there are clearly a continuum number of distinct finitary theories of

measurement. Notice also that if the theory is closed under subsystems then

the axioms may be taken as universal sentences, and conversely. In case one

considers theories consisting of all finite relational systems imbeddable in

a given numerical relational system, then the problem of a recursive or

effective axiomatization is simply the problem of whether the class of

universal sentences true in the given numerical relational system is recur­

sively enumerable or not. It is not difficult to establish that this last

problem is eqUivalent to the problem of giving a recursive enumeration of

all the relation types of finite relational systems not imbeddable in the

given numerical relational system. For numerical relational systems whose

relations are definable in first-order logic in terms of + and ~, these

problems do not arise since the first-order theory of + and < is decid­

able, and it is to these relational systems that we shall primarily restrict

our further attention.
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The most interesting axiomatizabilityquestion for finitary theories of

measurement would seem to be: when are they finitely axiomatizable'l In

empirical applications a finite axiomatization provides the basis for an

exact classification of sources of error. And if the axioms are universal

sentences, the computational decision as to whether a given relational

system is a model of the axioms (and thus a member of the theory of measure-

ment defined by the axioms) reduces to considering subsystems of the given

relational system which have a cardinality equal to the number of distinct

variables required to write the axioms as a single universal sentence.

Vaught [7] has provided a useful criterion for certain classes of relational

systems to be axiomatizable by means of a universal sentence. His result

yields immediately the following criterion for finitary theories of measure-

mente

~ finitary theory of measurement K is axiomatizable by ~ universal sentence

if, and only if, K is closed under subsystems and there is an integer n

such that if any finite relational system {JL has the property that every

subsystem of (J( with ~ more than n elements is in K

The classes of finite simple orderings and finite semiorders are two examples

of finitary theories of measurement axiomatizable by a universal sentence.

On the other hand there are interesting examples of finitary theories of

measurement closed under subsystems which are not axiomatizable by a universal

sentence. We now turn to one such example.

Let F be the class of all finitary relational systems of type < 4 >

imbeddable in the numerical relational system < Re J 6. >. A wide variety of

sets of empirical data are in Fe In fact, all sets of psychological data
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based upon judgments of differences of sensation intensities or of differences

in utility qualify as candidates for membership in F. For example, in an

experiment concerned with the subjective measurement of loudness of n sounds,

the appropriate empirical data would be obtained by asking subjects to compare

each of the n sounds with every other and then to compare the difference of

loudness in every pair of sounds with every othero More elaborate interpreta-

tions are required to obtain appropriate data on utility differences for

individuals or social groups (cf. Davidson, Suppes and Siegel [2], Suppes and

Winet [5]). It may be of some interest to mention one probabiltistic inter-

pretation closely related to the classical scaling method of paired comparisons.

Subjects are asked to choose only between objects, but they are asked to make

this choice a number of times. There are many situations in which they

x will be chosenthatvacillate in their choice, and the probability Pxy

over y may be estimated from the relative frequency with which x is so

chosen 0 From inequalities of the form p < p we may obtain a set ofxy - zw

empirical data, that is, a finite relational system of type < 4 >, which

is a candidate for membership in F. The intended interpretation is that

if 1
P >­xy - 2

and 1
P > -2' thenzw -

if and only if the difference

in sensation intensity or difference in utility between x and y is equal

to or less than that between z and w, the idea being, of course, that

if x and yare closer together than z and w in the subjective scale,

then the relative frequency of choice of x over y is closer to one-half

than that of z over Wo

Before formally proving that the theory of measurement F is not

axiomatizable by a universal sentence, we intuitively indicate for a
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relational system of ten elements the kind of difficulty which arises in any

attempt to axiomatize F. Let the ten elements be ordered as

shown on the following diagram with atomic intervals given the designations

indicated.

Let a be the interval (al ,a
5

) , let 13 be the interval (a6,alO ) , and let

)' be larger than a or 13· .We suppose further that

a
l

is equal in size to 132

a
2

is equal in size to 134

a
3

is equal in size to 131

a4 is equ.al in size to 133

but

a is less than t3.1J/

The size relationships among the remaining intervals may be so chosen that any

subsystem of nine elements is imbeddable in < Re,b. >, whereas the full system

of ten elements is clearly not.

Generalizing this example and using the criterion derived from Vaught's

13/ Essentially this example was first given in another context by
Herman Rubin to show that a particular set of axioms was defective.
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theorem we now prove:

Theorem: The theory of measurement F is not axiomatizable by~ universal

sentence.

Proof: In order to apply the criterion ofaxiomatizability by a universal

sentence, we need to show that for every n there is a finite relational system

OiL of type < 4 > such that every subsystem of CJ( with n elements in its

domain is in F but {J[ is not.

To this end, for every even integer n > 10 we construct a finite rela-

tional system Ch( of type < 4 > such that every subsystem of n-l elements

is in F. (~fortiori every subsystem of n-k elements for k < n is in F.)

To make the construction both definite and compact, we take numbers as elements

of the domain and disrupt exactly one numerical relationship. Let now n be

an even integer equal to or greater than 10. The selection of numbers

al, ... ,an may be most easily described by specifying the numerical size of

the atomic intervals. We define:

ex. = a. 1 - a. for . 1 n -1
l l+ l l= ""'2

(3i = a - a for . 1 n -1.
n . 1 n . l= ""'2
'2+ l + -+l

2

We then set:

ex.
l

a
n
- +1
2

for . 1 n 1
l= ""'2 -

In fixing the size of (3., we have two cases to consider depending on the
l
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parity of n
2'

Case 1.
n

is Then n 1 odd, and we set: if i iseven. - is even
2 2

f3 i = a. for i=2,4, ..• ,% - 21
2

and if i is odd

f3 i for . 1 n 1.= a i-l 1= ,3,·· "2 -n
1++ 2

Case 2.
n is odd. Then n 1 is and we set: if i is- - even, even
2 2

f3 i = a. for i=2,4, ... ,~ - 1
1
2

and if i is odd

Thus if n=12,we have:

i+l
2

for i=l,3, ••. ,% - 2.

a
l = f3 2

a
2 = f34

a
3 = f3l

a4 = f33

a
5 = f35

.

With the set A = {al , ... ,an1 defined, we now define the relation D
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as the expected numerical relation except for permutations of a
l

, a , a
n E. +1
2 2

and a. If x,y,z,w€A and < x,y,Z,w > is not some permutation of
n

< al,a ,a ,a > then < x,y,z,w >E..D if and only if
E. E.+l n
2 2

(1) x-y :s z-w,

Moreover, let a = aI' b = d = a ,
n

then we put the following

nine permutations of < a,b,c,d > in D:

< b,a,d,c > < a,d,c,b>

< b,d,a,c > < c,b,d,a>

(2) < b,d,c,a > < c,d,a,b>

< a,b,d,c> < c,d, b,a >

< a,c,d,b>

(These nine permutations just correspond to the strict inequalities following

from b-a < d-c. All nine are needed to make the subsystems of < A,D > have

the appropriate properties.)

From the choice of the numbers in A and the definition of D it is

obvious that < A,D > is not imbeddable in < Re,6 >, that is, that < A,D >

is not in F, for the atomic intervals between al
and a must add up to

n
2

It

buta ,
n

and-a
E.+l
2

is less than the interval (a ,a)o
E. +1 n
2

a length equal to the sum of the atomic intervals between

by hypothesis the interval

remains to show that every subsystem of n-l elements is in Fo Two cases
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naturally arise.

Case 1. The element omitted in the subsystem is a ,
n
"2

a
~+l
2

or a .
n

Then the nine permutations of (2) are not in D restricted the subsystem,

and the subsystem is not merely imbeddable in < Re,6 > but by virtue of (1)

is a subsystem of it.

Case 2. The element omitted is neither nor a.
n

Let a.
1

be the element not in the subsystem. There are two cases to consider.

Case 2a. a. < a. For this situation we may use for our numerical
1 n

2

assignment the function f defined as follows:

f(a.. ) = a .. + 1
1-J 1-J

f(a.. ) = a ..
l+J l+J

for j=l, ••. ,i-l

for j=l, ... ,n-i.

It is straightforward but tedious to verify that f is a numerical assign-

ment, that is, that it preserves the relation D as defined by (1) and (2).

Only two observations are crucial to this verification. First, regarding

atomic intervals (in the full system), if

then

for k> i,

f(a .. 1) - f(a .. ) :: (a.. 1 - 1) - (a. j- 1)
1-J+ 1-J 1-J+ 1-
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Second, the numbers in A were so chosen that if x,y,z,wEA, if (z,w) is

not an atomic interval, if (x,y) ~ (z,w) and if

x-y :s z-w,

then

(3) x-y+2 :s z-w;

whence it is clear from the definition of f that

f(x) - f(y) :s f(z) - f(w).

(Note that (3) implies the weaker result that no two distinct non-atomic

intervals have the same size.)

Case 2b. a. > a + 1. Here we may use a numerical assignment f
1 n

2

defined, as would be expected from the previous case, by the equations:

f(a .. ) = a ..
l-J l-J

f(a.. ) = a .. +1
l+J l+J

for

for

j=l, ... , i-l

j=l, ... ,n-i.

And this completes the proof of the theorem.

It would be pleasant to report that we could prove a stronger result about

the theory of measurement F, namely, that it is not finitely axiomatizable.

Unfortunately, there seems to be a paucity of tools available for studying

such questions for classes of relational systems. However, we would like

to state a conjecture which if true would provide one useful tool for study-

ing the finite axiomatizability of finitary theories of measurement like F
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which are closed under submodels. We say that two sentences are finitely

equivalent if and only if they are satisfied by the same finite relational

systems, and we conjecture: if S is a sentence such that if it is satisfied

by a finite model it is satisfied by every submodel of the finite model, then

there is a universal sentence finitely equivalent to S. If this conjecture

is true it follows that any finitary theory of measurement closed under sub­

models is finitely axiomatizable if and only if it is axiomatizable by a

universal sentence.

The proof (or disproof) of this conjecture appears difficult. It easily

follows from Tarski's results [6] on universal (arithmetical) classes in the

wider sense that if the finitistic restrictions are removed throughout in the

conjecture, the thus modified conjecture is true. For S, being closed under

submodels, defines a universal class in the wider sense of relational systems,

which class is axiomatizable by a denumerable set of universal sentences.

Since S is logically equivalent to this set of universal sentences, it is

a logical consequence of some finite subset of them, but because it implies

the full set, it also implies the finite subset and is thus equivalent to it.

Our conjecture is one concerning the general theory of models and its

pertinence is not restricted to theories of measurement. In conclusion we

should like to mention two unsolved problems typical of those which arise in

the special area of measurement. (i) Let R be any binary numerical relation

definable in an elementary manner in terms of plus and less than. Is every

finitary theory of measurement with respect to R finitely axiomatizable?

(If our conjecture about finite models is true then the theory of measure­

ment F is not finitely axiomatizable and shows that the answer to this
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problem is negative for quaternary relations definable in terms of plus and

less than.) (ii) Is every finitary theory of measurement axiomatizable by ~

universal sentence ~ theory of measurement with respect to ~ numerical rela-

tional system all of whose relations are definable in terms of addition and

ordering of real numbers?
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