





















































































































































































































































Table 10b. Observed and predicted second-order sequential statistics

for subgroup I-MP (N = 15) - during runs 47-66, =« = 65.

Trial  Observed | Predicted N(A1|E1AJEKA£)

ﬁée ,Eﬁl N(=|EiAjEkAg) N(A1|EiA3EkAﬂ) W-5 CP-3 CP-10 VP-3
11 11 7661 7273 70514 7292.9 7310.9 7297.2
11 21 Ll 399 303.9 387.6 395.8 389.2
11 12 L3590 Loal Loho.7 4178.6 4173.2 h177.2
11 22 266 240 183.3 233.5 229.4 232.2
21 11 466 L26 321.1 409.6 41g.2 411.6
21 21 51 39 30.3 43.2 bl .3 43.2
21 12 286 24 197.1 251.3 255.7 252.1
21 11 29 27 17.2 2.5 2h.2 2k b
12 11 W56 239 h101.4 okt b L237.1 4240.0
12 2121 24l 204 168.1 214 .4 218.3 215.4
12 12 1912 811 1759.8 1819.7 1810.7 1817.1
12 22 90 81 62.0 79.0 77-3 78.4
22 11 274 226 188.8 240.5 236.3 239.1
22 21 37 _ 31 22,0 31.3 31.6 31.2
22 12 114 98 78.6 100.1 98.9 99.4
22 22 18 10 10.7 15.2 4.9 15.1
Total 20735 19582 18536.3 19562.7 19576.9 19562.7
i} ' 4,20 113.40 10.84 12.48
B .01 .18 .55 - 37
" -99 .98 .31 .99
P .01 .18 1.75 <37
X° 702.55%% 46. ga¥* L. 35%%* Lk, 06**
A.A.D. 157 .045 .0L5 .04l

*p < .10 Tp < .01

8



Trial
n-1

E.A,
i)

11
12
21

22

Total
N(&)
3(e)

1(ey)

A.A.D.

*p < .10

: Tabie lla. - Observed and predicted first-order sequential statlistiecs
for subgroup [I-MP (N = 15) during runs 47-66, = = .80.

Observed

N(-lEiAj) N(Al]EiAj)
16117 15420

892 694

3938 3752

2h8 - 188

. 21165 20054
*H

p < .01

W-5

15421.7

696.6
'3750.1
- 188.7

- 20057.2

- 5.10
.13
.16
.85
.08

. 002

Predicted N(AlIEiAj)

CP-3

154024
700.9
3743.5
189.5
20636.4
©5.20
.13
'.05
2.67
1.21

.00k

cP-10

15429.1
710.7
3729.5

186. 4
20055.6
4.86
.23
.05
4.93

.

1Y

. 009

VP-3

15430.6
687.2
3753.8
186.5

20058.1
.87
.20
.10
2.00

.547

.00k

Linear

15386.8
698.5
3759.6
194.2

20639.é
;59
-95
.95

*
2.97

. 009

8



Table 1lb. Observed and predicied second-order sequential statistics

for subgroup ITI-MP (N = 15) during runs 47-66, = = .80°

NN HRFRRRFOMN DN R R R E 3

Trial Observed . Predicted N(A lE A )
2 -Eél N(°|EiAjEkAﬂ) N(AllEiAjEkAﬂ) W-s CP-3 CP—lO VE-3
1 11 12395 11929 11923.8 11925.0 11952.7 11894.5
1 21 she 471 4354 438.7 438.6 1806
1 12 3040 2912 2905. 4 2904.0 2900.9 2898.6
1 22 154 131 119.6 120.2 118.0 118.6
111 559 B2 451.9 455.3 456.8 L46.8
1 21 160 75 - 121.5 122.5 122.5 119.6
1 12 160 ' 241 128.2 129.1 128.8 126.8
1 22 43 1h 31.5 31,7 31.1 31.1
2 11 3008 2880 2878.0 2877.3 2876.5 2871k
2 21 137 1119 109.2 109.9 - 109.5 107.9
2 12 707 671 £66.5 666.5 664.1 665.3
2 22 41 37 ' 31.6 31.7 31.0 31.3
2 11 155 129 120. 4 121.0 118.7 119.8
2 22 53 29 139.9 40.4 Lo.k4 39.4
2 12 36 28 27.7 27.9 27.2 27.5
2 22 10 6 7.3 7.4 T.2 7.2
Total 21195 20054 19997.9 20008.7 20024.0 19936.0
N 5.30 5.50 4.98 5.22
i) ' o .18 .17 .23 .31
W N .19 06 .05 (14
9 L% 2.75 5.00 .22
X2 _ 171.77%% 173.05%% 175 hu¥x 175.07%%
A.A.D. .101 .098 .10 .101

€8



Trial
n-1
E.A

1]
11

12

2.2

Total
n(9)
5(p )

kle,)

A.A.D.

*
p < .10

Table 12a.

for subgroup I-HI (N = 5) during runs 47-66, = = .65.

Observed
N('|EiAj) N(A1|EiAj)
L4023 3639
- b3y 383
2002 1898
250 215
6802 6135

H*
p < .01

3512.4
351.6

| 1826.5

2C1.1

5891.7

© 1k.59

01

-99

.01

77,00

.0L8

CP-3

3650.2
381.9

11895.8

217.1.

6145.0

25.61
.39
.65
.60
W57

.0C3

Predicted N(Al[EiAj)
CP-10

3671.7
- 387.9
1901.8
2i7.1
6178.5
22.56
29
.30
2.00
*

*
L1z

011

Observed and predicted first-order seguential statistics

VB-3

3649.1
382.2

189h.2
216.6

61h2.1

24,67
.50
.69
T3
48

. 003

Linear

3617ﬁ6
378.2
1883.5
216.6

6095.9
.07
.89
o1

*
2.93

. Q07

Lts



Table 12b. Observed and predicted second-order sequential statistics
for subgroup I-HI (N = 5) during runs L47-66, =« = .65.

MR HRFRPHFEMOMONOMMNMEHERRFVE

Trial Observed Predicted N(A1|EiAjEKA3)
Eﬁz Eﬁl N(°|EiAjEkA£) N(Al]EiAjEkAﬂ) W-S CP-3 CP-10 VP—3.
1 11 2288 2084 _ 2021.1 2086. 4 2104.9 2090.2
1 21 239 218 193.4 207.5 211.1 209.2
1 12 1321 1207 1166.9 1201.1 1208.7 1200.5
1 22 155 138 125.4 132.k 132.7 131.8
1 11 261 235 211.2 206.8 230.8 228.7
1 21 35 27 26.5 " 29.3 29.9 29.6
1 12 143 118 115.7 123.8 125.6 124,3
1 22 21 18 15.9 17.3 17.4 17.2
2 11 1315 1188 1161.6 1195.6 1203.6 1195.1
2 21 137 ‘118 110.8 118.7 120. 4 119.5
2 12 563 515 497.3 510.2 512. 4 508.6
2 22 58 Lo L6.9 ho ki Lok 49.0
2 21 159 132 128.6 135.9 136.1 135.2
2 21 26 _ 20 19.7 21.5 21.9 21.4
2 12 €5 58 52.6 55.4 55.3 Eh.g
2 22 16 10 12.1 13.1 13.1 13.0
Total 6802 6135 5909.2 612h.2 6173.2 6128.1
N 13.30 17.29 15.53 15.65
8 0l .63 .58 .71
M ‘ -99 .99 o .29 .96
P ' Noxl .63 ' 2.00 T4
*¥* ¥
xe 85.48 18.68 00,16 18.40
-A.A.D. ‘ .053 .037 .039 .037
*p < .10 p < .01

58



Trial
- n-1
E.A

11

12

2 2

VTotal
N(8)
8(p,)

nle,)

ALA.D.

*
p < .10

Table 13a. Observed and predicted first-order seguential statistics

for subgrcup I-LO0 (N = 3) during runs MT—66,. T = .65.

Observed
N(-|EiAj) N(AllEiAj) W-S
1867 1327 - 1360.9
959 634 60k4.1
1042 711 - 678.3
L9k 233 - 269.5
4362 2905 C 2012.8
5.45
48
.03
15.25
2. 48"
.039
o < o1

OP-3

136k 4
607.2

- 679.9

270.@

2921.8

' 5.50

.48
.03

15.50

*%
22.57

.038

Preélcted N(A1|EiAj)
CP-10

1366.1
625.2
66i.3
270.9

2926. 4
5.45

59

LOb
15.00
25.29

- 039

00,187

VP-3

1361.1
6042
678.6
269.6

2913.5
5.45
48
.03
15.25

*

.039

Linesr

1351k
596.7
677.9
271.2
2897.2
23
77
.46

' Eh;3l**

.0ho

98



Table 13b. Observed and predicted second-order sequential statistics
for subgroup I-I0 (N = 3) during runs U47-66, = = .65.

NI I R R S S S e

Trisl Observed o Predicted N(A1|EiAjEkAE)
2 Eﬁl N(°]EiAjEkAE) N(A1|EiAjEkAﬂ) W-8 CP-3 CP-10 VP-3
1 11 833 646 653.5 656.5 665.3 653.6
1 21 3k oLl 223.4 o2k .2 245.1 223.5
1 12 500 380 368.6 369.3 354.8 368.6
1 22 207 105 123.8 123.7 . 125.6 123.9
111 396 235 260.2 261.3 284.6 260.2
1 21 201 125 105.9 106.1 12k .4 105.9
1 12 238 122 14k, 9 5.0 148.7 145.0
1 22 120 53 ' 57.1 56.8 61.6 57.1
2 11 L7l 359 356.1 357.2 3L6.6 356.2
2 21 227 17k 136.0 136.0 143.0 136.0
2 12 231 166 162.5 162.5 148.0 162.6
2 22 96 46 ‘ 52.6 52.3 50.2 52.6
2.11 164 87 98.1 98.0 99.5 98.1
2 21 187 ‘ 91 . k.2 - gh.2 105.7 9.2
2 12 73 L3 ho.2 4o.0 377 ho.2
2 22 71 29 32.1 31.9 32.8 32.1
Total 4362 2905 . 2909. 3 2914.8 2973.6 2909.8
N L.87 4,70 k.75 4.87
B .26 27 .53 .26
n | .02 .02 .05 .02
P 16.50 17.00 9.71 16.50
X2 _ _ 71.53%% 71.55%% 101.22%% 71.53%%

A.A.D. . _ .056 .056 .061 .056

18



Trial
n-l

E.A.
id

11

22

.Total
N(G)
S(Dl)

uip,)

A.A.D.

*
p < .10

Table 1ha.— Observed and predicted first-order sequential statistics

for subgroup II-HI (N = 6) during runs 47-66, x = .80.

Observed
N(°|EiA3) N(AllEiAj)
5960 5Tl
208 215
1451 1399
62 5L
7701 7415

K
p < .01

5748.9
211.1

1396.2
56.5

Thi12.6
18.57
Ll
.99
il
2.35

015

CP-3

575k 4
213.6
1393.0

55.9

7416.8

- 15.50

6l
.34
1.91
1.70

.010

Predlcted.N(Al|EiAj)
- CP-10

5752.1
- 213.2
1393.0
56.0
7&1&.3
16.00
95
.13
4.38
1.69

.010

VP-3

5759.4
213.8
139k.7
56.0

7h23.9
15.88
.6h
Lk
1.55
1.98

L0111

Lineaxr

5716.4
209.3
1383.9
56.6
7366.2
.09

.91

10.82°7

.021

88



Table 14b. Observed and predicted second-order seguential statistics

for subgroup II-HI (N = 6)

Trial Observed :

-ﬁia Eﬁ} N(°|EiAjEkAﬂ) N(A1|E1AJEKA£) W-8
11 11 heil L4465 4h60.8
11 21 166 159 151.9
11 12 1132 1091 1090.5
11 22 4o Ll 43.2
21 11 171 157 156.7
21 21 11 10 9.8
21 12 52 50 7.k
21 22 4 3 3.5
12 11 1127 1084 1085.7
12 21 be) 4o 38.3
12 12 260 251. 2hg. 2
12 22 8 6 7.1
22 11 L8 Hy | 42,8
22 21 g 6 7.9
22 12 7 7 6.2
22 22 2 1 .9
Total 7701 Th15 Tho2 4
N 13.30
B A7
M : -99
Q- ' 47
X2 14,18
AA.D. _ .057

during runs 47-66,. n = .80.

Predicted (NAl{EiAJEkAﬁ)

CP-3

|9}
o
OHOWORFH ®OEFEFOORE

—J
gl
Julr’
n
O

11.%0
62
.32

1.93
13.1h
.056

CP-10

(3]
[e¢)
N OHRER EFOOOWWV O OCWN

—J
=
N
(e
=

11.55
.66

4
1.56

- 13.21

. 056

.y
OO FOWDE Fu o

68



Trial
n-1

E.A,
1iJ
131

12

22

Total
N(9)
5(p,)

k(py)

CAALD

*
p < .10

Table 15a.

for subgroup II-LO0 (N = 6) during runs 47-66, = = .80.

Obgserved
N(”IEiAj) N(AllEiAj)
5811 5251,
721 591
1426 1265
191 1h7
8149 725k

¥k
p < .0L

W-5

_ 5254 .8

590.0
1261.1

1h8.6

- 7254.5
S 7.91

.34
.10
3.38
.22

.003

CP-3

5257.7

595.0

- 1260.3

14g.4

7262.3
8.10

- 37

.06

5.88

5T

.00L

Predicted N(Al]EiAj)
CP-10

5262, 0
583.1
1271.9

151.7

7278.7
8.97
.27
Ok
7.39
1.33

.008

QObserved and predicted first-order sequential statistics

5254.6
591.7
1263.3
149.6

7259.2
8.27
.33
.08
L.20
.26

.ook

Linear

5208. 4
581.6
1250.1
1h9;7
7209.9
.21
.96
.80

3.41

.010

06



Trigl
n-2 n-1
AR AE
11 1
11 2
11 1
11 2
21 1
21 2
21 1
21 2
12 1
1Te 2
12 1
12 2
22 1
22 2
22 1
22 2
Total
N
a .

[

P

X2
AoAnDﬁ
*p < .10

PO H 3 RO O R DN

Table 15b. Observed and predicted seéond—order;sequential statistics

N(ﬂIEiA

higp
450
1029
115
487
112
120
27

- 1025
120
23L
39
107
37
43
10

8149

o < .ol

for sﬁbgroup II-10 (N = 6) during runs 47—66, 7T

Observed

A N(A1|EiAjEkA£)

3813
377
931
93
423
79
97
13
927
106
207
33
88
29
30
8

7254

W-3

3826.9

- 3ThT

923.5
92.2
L06.8

87.6

98.3.
20.3
0921.7
99.8
206.7
30.7
85.8
28.6
33.8

724k, 8

8.85 -
.30

.09
3.45
25.46™"
.Olly

.80

Predicted N(Al|EiA3EKA£)

CP-3

3825.7
374,
o2k,
02,
Lo6.
87.
98.
20.
900,
99.
207.
30.

OO H W =10 &= OO

w N o
~Jlw CoON
N0 ONO

72h6. 1
9.02
.28

.05
6.03
25, b6*¥
Ol

CP-10

3839.6
3795
928.5

92.7
Lot.6
87.9

98.7

20,4
906.6
100.2
208.3

30.9

86.2

28.7

34,1

7.5

7273.4
8.97
.27
e
7.39
26,60
.Olky

L.,22

25.53°"
Nonn

6
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predictions from the modified linear operator model in the column
headed Iinear. The paréméter estimatéé'and thg_minimum X2 value are
also given. Also, the observed second-order Irequencies,
N(A1|EiAjEkAE) , are presented, together with the predicted fregquencies
from the wesk-strong and constant parameter (k = 3 , 10) models.

.For the homogeneous subgroups, thé prediétioné'of first- and secoﬁd—
order frequencies from the 3-state mocdel incorporating the variable
parameter assumption are also presented in the column headed VP-3.

It should be noted that the transition frequencles are presented
instead of the"transitibn proﬁabiiities. The'freqﬁencies are more
informetive in this case, since a numerical estimation procedure
yieldiqg a minimum X2 estimate was used. The normalizing freguencies,
N(~|EiAj) and N(nlEiAﬁEkAz) , are presented for each sequence,
allowing recovery of the {transition probabilities. Moreover, because
of the limited space, only the observed and predicted Al transition
frequencies are presented, and the A2 frequencies can be obtained
from the normslizing frequéncies. The averége absolute deviations
(A.A.D.) have been computed and are presented for comparison with the
X2 values. |

The observed first-order transition mstrices were used to obtaih
perameter estimates in the following mannér. There are eight cell
=éntries in the first-order traﬁsifion matrix which may be used for
- estimgtion purposes. Parameter estimates will be obtained from the
Bbserved conditional statistics,.and it will be required that the pre-

dicted transition frequencies in each row sum to the observed value

N(°|EiAj) thus reducing the available degrees of freedom from seven
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to four. In all of the analyses, it is assumed that © = 8 , d.e.,
thzt COuntérconditioning is eqﬁiﬁaleﬁt to a weakening ﬁrocess. Thus
it ic necescary to estimate three paremeters, 8., o , and N . Sub-
ject_to the restraint mentioned above, ﬁalues cf the pﬁrameters arc :
chosen which minimize the sum of normalized squared deviations of the
predicted cell tfﬁnsitioﬁ frequencies -from the observed frequencies.
Thug, if ﬁ(Ai]EjAk) ig the predicted number of transitions in the

i th column and the (j,k)rth row, obtained by the relation
?(Ai]EjAk)N(»IEjAk) , where -?(AiIEJ.Ak) is a function of & , u ,
and N , then we seek thosefvalues of 8 ; u, and N which minimize
the function:

A 2
[5(A, | EjAk) - N(a, |EjAk) ]

. [20]
1,3,k N(Ai'|EjAk) -

The parameter vglues yielding the minimum value of this function
were.determined numericaily, using the IBM 7090, by means of_a binary-
search technique developed by the«programming staff of the Institute
for Mathematical Studies in the Socilal Sciences at Stanfcrd University.

The same procedﬁfe was followed in obtaining parsmeter estimates
based on the second-order statistics; i.e., it ié reqcired that fhe
predicted transition freqﬁencies in each row sum to the total observed
frequencies, N(*|EiAjEkAE) . This restriction reduces‘tc 16 the
degrees of freedom, and ﬁhe estimation of three parameters further
reduces the degress of freedom to 13.

| Parameter estimates were obtained scparately for the.first— and

second-corder statistics for the k-state models because on the one

hand, it was desirable to obtain a fit using the first-order



statistics for estimation, to allow comparison with the linear model,
and on the cther hand, we were interested in evaluéting the it of
k-state model to the second order statistics using the béest possible

. *
egtimate.

Sumrary of sequential statistics. The results presented in Tables

4-16 may be summarized by the following statements:
1) When the transition freguencies are accumulated over all
subjects in Group I or Group II (Tables 4, 5, 8, and 9), neither

_fhe k-state models or linear mocdels are very successful in

accounting for the data. The linear model provides unsatisfactory

fits of the Tirst-order statistics in every case. The weak-strong
medel and the.3-state model account rather well for the first-
order statistics of Group Ii during Runs 11-20 and Runs 47-66.
‘However, the models breék down whgn applied to fhe first—ordéf
statistics of Group I, or to any of the second-order statistics

of Group I or Group 1I.

2) In the eight cases where the models are applied to homogeneous
subgroups (Tables 6,'7, and 10-15) the Weak—strong model provides
g relatively adequate fit to the first-order statistics in four
cases (Tables 7a, lla, 1ka, and 15a), the 3-state model in five

cases (all except Tebles 6a, 10a, and 13a), and the 10-state

*3ée Appendix B for further details on the estimation procedure.
Special thanks are due to the programmers at the Institute, . Larson,
R. Miller and W, Philliips, for their invaluable agsistance in reduction

and ‘analysis of the data.

ok



model in three cases (Tables Ta, lia and 15a). The 3-state models
incorporating the constant and variable pérameter assumptions
‘provide quite similar fits in most cases,'althbugh the varisble
parameter model is generally a little better (Tables fa and 1ks
are exceptions), and in one tase (Table 10a), the fit is markedly
better. The linear model can account relatively well for fwo sets
of data {(Tables Ta and lOa). When the 3-state mddel was applied
to the second-order Statisticé, 8 relatively good fit was obtained
in two cases (Tables 12b and 14b), and in four other data sets,
the agreement betweén‘the model and the.déta was not too bad by
conventional standards (Tables 7b5 10b, 13b, and 15b). Again, it
made little difference whether the models incorporated the con-
-stant.dr variable-parémeter assumption,_and there was not even a
"Slight indication that one assum@tion might bé more-appropriate
‘than the other. |
“3) Considering the k-state models, if the mean response probabil-
ity is outside or near the bounds of a model for some particular
value of k , then the fit of the model is guite poor. Thus, the
~reason that the first-order statistics are inadequately represent-
“ed by the weak-strong model in two of the subgroups (Tables 10z
and 12a) is:that the mean response probability exceeded the upper
bound of this model. If a higher bound is obtained by using the
3-state model, the data can be accounted for rather well. 1In the
remaining instance where the weak-strong model gives a poor fit
(Table 13a), none of the models proves o be adequate, apparently

because - P(Al) is close to = , the lower bound of the models.
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(ﬁhile the conjecture gbove has nct been proved, it ig worth
-remarking that for a number of sets of date from human two-choice
experiments which are not discussed in this paﬁer, when the k-state
3 mpdels are applied %o thé data, the same deteriocration of the fit
of the models has been noticed when P(Al) is elose to the upper
of lower bound of the model for some Xk .)
74) Inxthe_cases where some k-state mpdel provides a fair account
of the data, parametér estimates based on the first-order statis-
tics may differ somewhat from those estimates based con the second-
order statistics. The parsmeter ¢ , which is the ratio of_ 5 to
u , remains relatively invariant, but the actual values of & and
'“‘_may vary considerably. The number of stimulus elements, N ,
is well behaved in most cases, but may sqmetimes range consider-
ably, depending on the statistic used for estimatiop, especially,
. it appears, if the estimate exceeds 10 (c.f. Tableg‘lo; 12, and

1E).

Reinforcement-run statistics. The third— gnd fourth-order reinforce-

ment-run statistics, N(AlJEiEiEj) and N(Al'EiEiEiEj) , i, 3 =1, 2,
iAo , were obtained for subgroups I-MP and II-MP during Runs 11-20
and during Runs b7-66, and also for the high snd low subgroups during
Runs 47-66. These frequencies and the normalizing frequencies are

' presented in Table 16, along with predictions based on the 3-state
model with the constant parameter assumption, where the parameter es-
timates were based on the second-order sequential statistics. Thus,
cne degree of freedom is available in each cell to test the fit of

the model. Two cells are empty in this table because of insufficient



A2 obserfatioﬁé foilowing the reinforcement sequence. VOf_the 30 re-
maining cells in this table.where p;edictions have been made, cnly
three cells containideviations‘of the predicted from the observed
Values.large énouéh-to produce a X2 significant at the .10 level.
‘The sum of the 30 XP1s  ig 41.49617; a value this large or larger
can be expected about ten percent of the time with 30 degrees of free-
dom.

Also presented in Table 16 are the second-order statistics,
P(AllEiEj) ; which are presented in order that the recency effect may
be observed. Very often, with untrained human subjects, a negative
recency effect,_the so-called ”gamblers fallaéy,” has been noted. In
this study, however, ‘there is; usually speeking, a positive recency
effect, wﬁich most modeis.would predict; as the response on trial . n
is conditionalized on longer seguences of Ei events, there is an
increase in the probability of an Ai respanse on trial n . There
are two exceptions o the positive recency effect. First of all,

there sre perturbaticns in the = recency effect during 50-50

1

training, in that P(A11E1E2) is greater than P(Al\E ElEE) , while

i

the reverse relation should hold. The inversion is disturbing,
though the difference between theory and data are.not statistically
gignificant.

The second exception concerns the relation between the relative
effects of runs of El and 'EE events., In generél, for n > .50 ,

.P(Al) is constant over varying lengths of E event runs, while

1

P(Al) decreases over varylng lengths of ‘EE event runs. ‘In other

words, a series of El reinforcements does not increase the Al
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- Table 16a. Observed and predicted E

1

reinforcement-run’

statistics for selected subgroups.

Reinforcement seguence, trial n-k, n-k+l,...n-1

o E.E EEElEl | E5 E.E,
Group I Observed Observed ‘ Predicted " Cbserved Predicted
NC-) | W) RP(Ay) | ONC) | w(ay) | B(ay)] W(ap) | B(ay) | NC) | WA | B(a) | N(A)) | B(a))
I-MP .50 |2106 | 1123 | .5332 | 1345 693 | .5152f 710.2 | .5280 | 727 396 | .5uh7 | LoG.2 .5587
II-MP .50 [2082 | 1099 | .5278 | 1344 699 | .5201| 710.9 | .5290 737 ho3 ) .5k68 | 396.7 | .5382
I-MP .65 |5011 | L7200 | .9419 | 3196 | 3014 | .9k31 301?.0 .9&&0 2059 | 1949 | ..94E6 19u3.7' .9kko
. II-MP .80 |3353 | 3157 | .9415 | 2730 | 2585 | .gh69|2567.21 .9k | 2136 | 2010 | .9LkI10 2012.2 .9&21:
I-KX .65 |1637 | 1458 | .8906 | 1093 997 | .9122| 984.8! .9010 678. 620 | .9145 | 611.8 .902&
I-10 .65 |1052 711 .6758 652 435 | 6672 438.41 6734 o1 295 | .7357 276.6* .6899
~ II-HI .80 |1226 | 1171 | .9551 | 1036 990 {-.9556 994.2 .9597 B11 | 780 | .9618 | 779.8 | .9616
1I-10 .80 |1291 | 1150 | .Bo07 | 1076 955 | .8876| 953.6| .B8862 839 748 | .B915 1 T745.4 | .888L
Note. Predietions are from the 3-state model with a constant parameter assumption, using
parameter estimates based on the.second-order seqtential statistics.
5 _ . T
_X , p < .10
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Group

I-MP
II-MP
I-MP
Ti-MP
I-HI
I-1.0
II-HT

II-LO

250
.50
.65
.80

.65
.65
.80
.80

Table 16b.

Observed and predicted E

2

reinforcement-run

statistics for selected subgroups

Reinforeement sequence, trial n-k, n-k+i,...n-1

E.E, E,E.E, B.E_EE,
Observed Observed Predicted Observed Predicted

() N(a )| P(A) | NCe) | mCAp) | B(a)] N(AL) fP(A)) | NC-) | N(Ap) | B(A)) | N(Ap) | R(A,)
2093 | 986 | k710 1358 | 618 | .L551) 640.9 | . 4720 | 698 | 30k | .L355 | 308.1 |.bha3
2069 | 1033 | .bkgg2 | 1322 631 | W773) 622.7 | 4710 695 330 | L4748 | 320.9 | .4k617
horl | 4725 | .9505 | 1iho | 1347 | .9354|1358.9 | .9437 586 530 | .90kk | 552.4% .gue7
3397 | 3198 | .9h1h 700 660 | L9429 652.3 | .9319 110 100 | .9091 101.8 | .9252
1640 | 1481 | .9030 489 438 | .8957]| 438.6 | .8970 204 177 | .8677 | 182.4 | .89k
1065 660 | 6197 303 189 | .6238F 187.6 | .6191 118 69 | .5847 69.4 | .5885
1237 | 1188 | .9603

1291 | 113k | .8783 281 240 | .8541| 2463 | .8766 46 35 | .7609 40.0'] .8689

Note.--Predictions are from the 3-state model with a constant parameter assumption, using

parameter estimates based on the second-crder sequential statistics.

*,2

insufficient cbservations, N(Az) < 5.

X, p<.l0

Empty cells indicate
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probability, while a series of E2 reinforcements does decrease the
Al probability. This asymmetry of the qlasses.of reinforcement events,
which is predicted by the k-state models for k > 2 , will be consider-

ed further in the next chapter.



Discussion

.In this final section, we will comment on-certain problemé which
arcse duringthe course of the study, ana make eiplicit certain aspects
of the study which we feel to be significant. First we will take up
the matter of response bias, a possible manner in which this bias
' might be taken into account in the k-state models, and the probable
effects of bias in this study, in terms of the fit of thé model to the
data. Next there will follow some comments on the selection.pfocedﬁres
which were used to pick out the various subgroupé. By way of compar-
ing the two general classes of models which have been cbnsidered, viz.,
linear and k-state Markev models, the relative ina&equacy of the mod-
ification of the linesr model which was proposed will be considered,
and the section will conclude with a consideration of some problems
'related-to evaluation and comparison of the wvarious speéific models

included un@er the heading of k-state models.

Response bias. Well over hglf the subjects 1n this experiment exhib-

ited marked response biaées during the 50-50 schedule, selecting one
responée or the other more than 80 per cent of the time during a

block of over 1000 trials. An exemination of the response counts
during the preliminary 50-50 training, for which no punch-czrd record
is avalleble, indicetes that the biases were evident in most instances
virtually from the beginning of the two-response task, and these
biases were consistent during the entire course of the 50-50 schedule.
These results are comparable tc those obtained by a number of other
investigators; e.g. Witte (1959) found extreme bias in approximgtely
two-thirds of & large group of albino rate (N = 171) run in a two~
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cholee T-maze under a 50-50 schedule.

.It is possible; of course,.to-modify any of the Markov models 1o
include a neutral state, where it is assumed that the animél respoends
according to some biasing rule if a sampled element is in the neutral
conditioned state. This development has nct been carried through in
the present paper because of two partially related difficulties which
seem inherent in any model incorporating a neutrsl state. First, with
the exception of the mean response probability, P(Al) , which has a
falrly simple form, all theqretical expressions of the sort derived
earlier in this paper become cohsidefably more complex when one adds a
neutral state. Secondly, the estimaticn of parameters becomes much
more.difficult,.in part because of the increase in the complexity of
the theoretical expressions, but alsc because as one increases the
number of parameters, the computer time réquiréd to obtain estimstes
increases exponentially. .

Actually, the state of affairs is not as bad as it might seem.
f'or assumptions of the sort which were considered, 1t turns out that
the probability that an element is in the neutral state reaches a max-
imum when = is .50. (An analogous result which was proved for the
k-state models is thai the probability that an element is in a weak
state of conditioning reaches a maximum when wx is .50.) The failure
tec take the bias into account should be most noticeable during the
50-50 schedule, but the models should prove falrly adeguate for the
other schediles. 1In the absence of particular interest in the bias
phencmenon, it is unfortunate that effeoris to minimize bias in the

apparatus were not more successful, since, e.g., the existence of
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marked blases greatly complicated the evaluation of the manner in

which parameters might vary as a function of =« .

Selection of subgroups. Tﬁo'ﬁifferent procedures were used to select

homogeneous subgroups. First, those subjects shbwing the least bias
during the 50-50 schedule'were selected. Secondly, subgroups of
subjects whose mean response probability was similar during the 65-35
and.80=20 schedules were formed. These two selection procedures are
not independent, buf the first procedure'is more sensitive to bias,
while the second procedure ig more sensitive to siﬁilarity of cohdi-
tioning parameters.' (More properiy, the second procedure selects sub-
jects having s common wvalve of ¢ , the ratio of the'con&itioning
ﬁaramefers;) The sécond procedure produced thé bettef results, con-
sidering the 65-35 and 80-20 data, which indicates that the existence
of initial biases may indeed not he too important if the feinforcement
schedule. and mean response probabilities are not close to .50.
Moreover, the poorer fits for the lafge groups, which are com-
posed of subjects whose conditioning parameters may be presumed to
vary rather widely, points out that adequate tesis of a model may re-
quire that the assumptions of the model be closely met. The k-state
and linear models constitute descriptions of the behavior of individ-
ual subjects, and cannot”necessarily be expected to account adequately
for the behavior of a.group of organisms exhiviting widely disparate.
behavior. Neither of the selecticon procedures which were used guaran-
tees in any way that the models will fit, since the criteria for sel-
ection gre not directly related to the statistics used to test the

models;  the selection procedures used the mean response probability,



while sequential statistics were used to evaluate the models.

Linear model. The linear model has been given relatively brief treat-
ment in thig papefe The task of deriﬁing the secbnd—order seguential
statistics has not been attempted and the genersgliization of the linear
model which was preéented represents oaly one of a variety of modifi-
cations which might be e};amine_dT It was analyzed beczsuse it has an
intuitive interpretationrin terms of memory for past events,.yetl
fetains a simple forﬁ. By and large, the linear modél was less ade-
quate than the Markov models, and the reasons for the poorer fits pro-
vided by the linear model are fairly essy to point out.

First, an examination of Eq. 15-18 will show that the linear model

predicts that
P(.A1|E1Al) - P(A1|E2Al) = P(A1|ElA2)_ - P(AllEgAE) . [21]

I.e., the effects of the El and E2 reinforcement events are pfe—
dicted to be symmetrical, in the sense that the events are equally
effective in changing response probabilify, 1f the effect is condi-
tionalized on the'r85ponse which occurred. However, it is a character-
istic of the data that, for =n not equal to .50, the left-hand side
of Eq. 21 is much smaller than the right-hand side. The differential
effect of the reinforcements on the response probability on trizl n ,
given that an Al had occurred on trial n - 1 , was very slight,
while the differential effects of the reinforcements, given that an

A2 had occurred on trisl n = 1 , was considerably greater. In

particular, if an A2 oceurred on trial n -1 , and was reinforced,

there was a sizable decrement in the probability cf an Al on trial n.
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The difference between the right- and left-hand sides of Eq. 21 were
computed for the homogeneous subgroups where = was equal to .65 and
.BC. These differences are all negative, and range from -.0121 and
-.1610. There is only one inversion in the rank orderings of the size
of the difference above and the value of X2 from the linear model

for these sets of data; in general, as the asymmetry of the reinforce-

ment effects increases, as represented by these differences Just

described, the fit of the linear model to the data becomes worse.

A second problem with the linear model is best illustrated by
referring to data from the MP groups under the 50750 schedule (Tables
6a and 7z). There was some possibility thet the modified linear model

might be superior to the k-state. models in accounting for these data,

~since the k-state models must predict that the mean response. prcbabil-

ity is exactly egual to .50, given a 50-50 reinforcement schedule,
while the mean response probability predicted by the modified linear

model may vary between 0 and 1, depending cn and pg . The

P
deviation of the group mean from .50 during this schedule was not
large, but the linear model can predict this deviaticn, while the

k-state model cannot. Reference to Tables 6a and Ta will show that

for Group II-MP, the fit of the linear model is good, while for I-MP,

the fit ig very poor. The fit of the linear model to the larger groups,

I and II, is considerably worse than'thé fit of the k-state meodels.
The problem appears tc be that in compuiing Vé , homogeneity of

the subjécts is assumed, in the sense that all the subjects may be

described by the same set of parameter valuéé. The subjects in IT-MP

appear relatively homogeneous, the subjects in I-MP are less
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homogeneous, and thefe is wide variability in Groups I and iI; this
relationship parallels exactly the relative adedquacy of the linear
model. The second raw moment, V2 ; 1s estimated under the asssumption
that the population of subjecte 1s homogeneous, and the observed
heterogeneity results in too small an estimate of Vé . The effect of
”the underestimation is that it becomes impossible tﬁ account for the
response'perseveration which is observed in the hetergeneous groups.

By response perseveration is meant the tendency'fo repeat the
previcus response 1s véry ilarge, compared to the reinforcement effects,
or P(AllEiAl) - P(Al!EiA2) is large, relative to the difference,
P(AllElAj) - P(A1|E2Aj) for any B, and A,

By considering Eg. 15, one can see that if = is .50, and- v,

is slso close to .5C, Then in order for P(AiIElAl) to become relative-

ly large, Bpl must be large, since the remaining term, (l—G)Vé 3

Vi

reaches s maximum value of approximately .30, for any value of p ,
at 6 =2-Y2 ., Butif the reinforcement effect is relatively
small, (e.g., if- |P(AliElAj) - P(AliEgAj)] is less than .10 for all
Aj ) then G(pl-pg) must be small. If 6 is set equal to 2 4\/E;,
and if P(A1|E1Al) - P(A1|E2Al) < .10 , as is observed in the data,

then 0 = P must be around .15 to account for this difference.

2

Hence must be spproximately .57, since o (or Vl) is close to

Py |
.50 by assumpticn. With these choices of the parameter values,
P(A1|E1Al) is predicted to be about .63, while the cbserved value of

P(AlIElAl) » in those cases where the fit is bad, is greater than .63




107

by quite a bit; the same type of problem is affeciing the other

cell entries, of course. If v, were estimated separately, in such

a manner that its %alue reflected the heterégeneity of the subjects,

it would presumably be larger, (l~9)Vé would be larger, and the fit

of the model should be improvad. Ancther course of action might be

to apply the model to individual subjects.

Comparison of k-state modelé° Tufﬁing to a comparison of the class of

k~state Markov models, we want to consider the questions, (1) can one
find an optimal value (or values) for k , and (2) what are the
relative merits of the constant énd variable parameter aséumptionsé"
While a partial answer to these gquestions was indicated in the summary
comments on the sequential statistics, there ere a number of further |
congiderations which are of interest.

With regard to the firet question, recall that as k 1is in-
creased, the upper bound on response probability incregses, tending

toward 1 as Lk Tbecomes large. As long as k 1ig sufficlently 1arge

so that the observed mean response probability falls between the upper

bound determined by k and the lower bound of = 3 then it appears

that k may take on & fairly wide range of values without drastically

changing the fit of thé mddel to_a given set of data. Using the

conétant parameter assumﬁtion the data of the homogeneous subgroups
were fitted with models for which k was seb equal to 3, 4, 5, and
10, as well as the weakmstrbng model. The results from the wéak-
strong, 3-state and 10-state medels are presented in the tables of

sequential statistics. Overall, the 3-state model does the best Job
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of_acppunﬁing for the_dataf The reasons for the relative inadeguacy
of_the weak~-strong model relative to these data have been discussedf_
Comparing the 3-state and 1l0-state models, the first-order statistics
are generally handled better by the 3-state model, but the difference
between the second-order X° values for the ftwo modéls over eight
sets of data is usually less than five per cent for each set of data.
Sometimes the 3-state model is slightly better, and sometimes the
10-state model is a little better, but in no case is the.differenée in
the it of the two models large enough to take seriocusly. Moreover,
although the detalls of the results will not bé presented, the same
_remarks also apply to comparisons of the_h-state and 5-state models
‘with the 3-state model. Thus for Values of k as large ss 10,
there is no clearcut evidence favoring ény particular value of k as
‘being an optimal value. |

Concerning the questipn of the constant and variable parameter
_asaumptions,_the gituation is quite similar. That is, comparing the
_35state model incorporating ﬁhe variable parameter assumption with
the 3-state consﬁanf péraﬁeter‘model, the predictions from the two
models are not fery diffe?ent, %ﬁa fhe XE 4values gre counsequently
Of the same order of magnitude for aﬁy set of data. This agreement
between models in the k-state class also holds for the L- and S-state
models. Thus, although it would appear that different assumptions
are being made about the nature of the underlying conditicning pro-
cesses, it.is not pogsible from these data to ghoose between the two

assumptions.
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Sources of discrepancy. Considering in more detail the fit of the

3—sfate constant parametef model to the data, it may be possible to
determine the exacf way in which the modél does nct agree with the
'secénd-order sequential statistics from the homogeneous subgroups.
Lookiﬁg at Tables 6b, Tb, and 10b through 15b, the discrepancy between
the model and these sets of data is reflected in a X2 cf about

k32, with 104 degrees of freedom. The contribution to this X2 of
each of the sixteen pairs of seguentisal statistics; N(AlIEiAjEkAE)
and N(AE]EiAjEkAB) , summed over all data sets, was determined in
order to find whether some of the.sequeﬁces were makihg é congistently
larger contribution to the total X2 than others. Five 6f the six-
teen sequences did constitute moré fhan half the total 'X'2 , and the
disérepaﬁcj between predicted and.obsérved values fof'these particular
sequénbes alﬁéys tended to bhe in the same direction within each
sequence, wifh no significant excepfions.

Following the sequences AEElAeEl R A2E1A2E2 , and AEEBAEEl s

an A2 tended to be observed on the next trial more freguently than

the model predicts. I.e., there was more A, perseveration, regérd—

2

less of the occurence of El events, than the theory predicts. The

contribution to the overall X2 of this perseverative factor, which
may reflect position preferences, was about 162. As mentioned pre-
viously, the k-state model, for = not equal to .50, predicts in-

creased perseveration on the Al resgponse as the mean response

probability increases. Put if an A,_. occurs cn any trisl, it is mcst

2

probeble that the sampled element is in g weak state of econditioning

to the A2 response; if an El follews the A2 , then with



probability @ +the element will change to a weak state of condition-

ing to the Al response, and hence an A, will occur on the next

1

trial on which the elemeﬁt is sémpled. On the éverage, then, persever-

ation on the _A2 response should be reduced by the occurrence of an

El , 1f 8 1is not small. In fhe data, however, the.tendency éf the

enimal to perseverate on the A2 response, regardless of the occur-

®rnce oﬁ an El relnforcement, was greater than predicted.
Followingrthe sequence A2E1A1E2 , more A2's were observed than

predicted, and.foilowing the seguence A1E2A2El , Imore -Al'g were
observed than predicted. In both these sequences, the subject makes
an Ai which is not reinforced, and switches to the alternate
fesponse, Aj , On the.following trial. The Aj is noﬁ reinforced
either; and following this pair of incorrect responses, the subject
switches back to Ai more frequently fhan the theory predicts. The
contribution of these two sequences to the total X2 was about T5.
In all of the models, it has been assumed that the effects of the
reinforéement‘events are independent of the preceding response and
reinforcement eveﬁts. One way of viewing this perturbaticn between
model and data from a theoretical standpoint, might be in terms of a
dependence between the relnforcement effect and preceding eﬁents.
One might assume, for example, that the effect of the reinfcorcement

- event on t$ial n might depend con Whether the response on the pre-
ceding trial had been correcf cr incorrect. An assumption of this
gort would result in enormous complications in analysis of the models

and we will not pursue the matter in any detail. However, the se-

quences mentioned above, as well as the sequences AlEEAlEE , and
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'AQEIAEEl , all.6f which constitute sequences of two consecutive trials
cn which the subject makes an incorrect response, seem to Indicate
that the.reinforcement-event foilowing the second imcorreét response
is more effective than the thecory predicts, bringing into guestion the
assumption of independence of the reinforcement events.

Although considering the overall X2 ~wvalue, the k-stgle models
did not give g totally satisfactory account of the response-reinforce-
ment pairs, the reinforcement-run statistics are fit rather well by
the 3-gtate model and this result is due to a property of the data
which the model predicts. As mentioned in the Results section, for
the 65-35 and 80-20 schedules, there is a marked asymmetrj hetween
the effects of runs of El events compared to runs of E2 events.

As the response on trial n 1s conditicnalized on longer and longer
runs of El events, the response probability remains virtually
constant, as the model predicts it should, given the values of the
parsmeters which hest describe the second-order sequential depsnden-
cles. [It 1s estimated that thefe are a fair number of elements in

the population, most of which are conditioned tc A if an element

1 3

is conditioned to A2 at the start of the run, in corder to increase

the A, probability, it must colmter-condition during the run of
El events, which is uniikely since & 1is small and N ‘is large. )
But as the response is conditionalized on longer and longer runs of
E.2 events, there is an increasing_decremgnt in the probability of
an A, , which the nodel also predictsf [Since p is alsc fairly
sﬁall, many of the elements which are conditioned.td Al_ are in the

weak state, and thus even though. & may be small, there is &
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relatively good chance that the element sampled on trial n was

initially weakly conditioned to A, and counterconditioned during

1

the run of E. events.]

2

Agymptotes and analysis. The overall response prcbability in this

study was very high. A number of subjects chose one response alterns-
tive on more than 99 percent of the trials during Runs h7-66. The
analysis of variance indicates that the response probability was still
climbing, and it 1s not inconceivable that the asymptote for all the
subjects might prove to be 1 or 0 eventuslly, although millions of
trials might be required in some cases to reach these final levels.
The tendency of subjects to absorb on a single response alternative
during long term training has also been noticed in a study using human
subjects by Bourne (1963). In a two-choice study using humsn subjects
by Friedman, Burke, Cole, Keller, Millward and Estes (1962), there

was some evidence of an upward trend in the response probability of
trained subjects following a long series of trials with = of .80,

- glthough the trend was not significant.

There are numerous models which can predict an asymptote of 1 or O
for values cof =« othér than .50. The simple linear model can be inter-
preted to predict this result, as can the modified linear model. The
upper bound on the k-staile models rapidly reaches a value which cannct
be distinguished.from 1 for reinforcement schedules other than 50-50;

e.g., for both the reinforcement schedules which were used in the

second portion of the study, the upper bound for the S-state model is
greater than .999%. However, the agymptofic data of subjects who

absorb on a response alternative do not permit a cholce between

12
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alternative models.

Thus attention hes been concentrated on subgroups of subjects
whose behavior over a blcck cf trials appears relatively stable at
some value between = and 1. A class of Markov models based on
reinforcement priﬁciples has been analyzed, showing that within
appropriate boundary conditions, models from this class give a fair

-account of the.seQuentiel statistics from these selected subgroups,

. compared to an alternative.lineaf'mcdel. From strict statistical
considerations, the models might be rejected, since, e.g., for the
3-state model from this ciass, the overall X or L32 with. 10k
degrees of freeaom is highly significant. However; céftain important
sources of the discrepancy between model and dats have been specified;
in perticular, there is more response perseveration in the date than
the ﬁodels predict. " Thig discreﬁancy has been laid'at the‘door of
"posifion.bias,” a tactic which admittedly is not entirely satisfac-
tory. The prospects of modifying the model to incorporate a bias
state are not very encouraging. A mbre_ﬁromising,course of =ction
rwould be,ﬁc-alter the expefimental sltuation in such a fashion that
the effect of bias factors would be reduced; in the.absence of a
better understanding of the sources of bias, such changes may have
to be made by a trial and erfor processe

The evaluation_of any model of behavior proceeds.a step afia
time. ”in the case of modeis applied to probability learning, the
initial test of & particular model is that it must be able to account
for the mean response probability.' It was the fact that the weak-

strong model imposed an uppef-bound less than the observed values of
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the subjects which lead to consideraticn of the k-state generalization.
Given a_model which can acgount for responsé ﬁrobability, next its
ability to account for the sequential characteristics of the data must
be determined. As response probability is conditionalized on longer
aﬁd longer sequences, the model is put to more rigorous tests. The
limit on such testing depends in part con the data, siﬁce the occurrence
.of obgervations following zome éequences becomes very rare for w not
to equal to .50, and also on the willingness of the theorist to derive
the increasingly complex expressions for thesé sequences. The impor-
tgmt ppint 1s that a model may give a very good account of a set of
gtaon ae lewl oOf analysis, and yet prove quite inadeguate when the
data are snalyzed in more detail.

In fact, one is almost guaranteed that, given a model of behavior
which 1s gquantitatively precise, scme aspects of the data ﬁill.be
found to differ significantly from prediciions of the model; An
examination of the ﬁature of £hese discrepancies often suggests ways
in which the assumptions of the model need to be changed. Thué, as
iliustrated in this paper, a mathemetical model not only.allows a
precise test of a set of axioms, but also may lead to important.modifi—

cations in assumptions about the learning process.
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Appendix A: Sequential Statistics for k-state weak-strong model -
N For simple wesk-strong model (k = 2):
S =85, =0 Lo o a-x)
1 1~ "2 1 (A%E) - )
|
TI.'2 1- 1) | ﬂ(l--n}ecg)
W, = W, = .
1 5A+ B) 2 A+ B

L) gk -2k 2

Sp=h-8-w 8y = (it B)

o E(1 o gk Ik -1

17 (A+B)
B } =ﬂ(k- 1)(1_ ﬂ)kq)k—l
> 2 " ¥z 2 )

S Ry kL2

5 = A+ E)
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For variable parameter case (6i+l_= 8.7 s by =Wy o kK2 3):

Sl=A-sl~Wl SezB'SE-WE
' k-2
-2 2 -
. ﬂk+l(l_ﬂ)k o (2 1)
1- {A+ B)
k-1
L ﬂk(l_ﬂ)k—lCPQ -1
1 (A+ B)
k-1
o ﬁk—l(l_ﬁ)kCPE -1
2 (A+ B)
k-2 '
L ﬂk-E(l_ﬂ)lﬁl@E(E -1)
2 (A+B)
k-1 k-1 k-1 .
A ﬁ2k—l 2 é:_ i _gk—l—l 5 (l_ﬂ)zk'l 2k 1 3 s i _Ek-l—i
- é T (P - § l-—ﬁ q)
l=O i:O

Firsi-order seguential dependencies:

P(AlIE;LAl) =% [+ (W - 1)A]

P(AllElAe) = -ﬁ% (w8 + (N - 1)AE]

P(Al'IEEAl) = -ﬁ%[sl + 8 ¥ wl(l - 8) + (N - 1)A21
(W - 1)A

il

P(4, |EA,) W



Second~-order sequential dependencies:

1+3(N-1)A+(W- 1)(1\1_2)1:&2

JP(A E.AE A ) = .
1t N[1+ (N-1)a)

W0+ (N ~1)A[26w, +B] +(N- 1)(x - 2)A%B

P(A, |E.AE_ A.) = -
1' Liie N{w,+ (N ~1)AB]
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1| bl N4 -w 0+ (N - 1)4°]
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1[1211 NE

P(AlIElAEElAE) =

2
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' N[w2(1n9)+ 8, + 82+(N-1)32]
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P(A, |B,AEA)) =
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Reinforcement run statistics:

P(4,|2.,2,) =

é{si g+ vy [1-9(1-6)21 Wy [(l-u){l;(l-e)a} + ua@] + S_J.(l-ue)@a
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Appendix B

Agssume, for purposes of explanation, that the theoretical expres-
sions, g(AilEjAk) , are functions of two parameters, « and B ,
having a range between O and 1.. The binary search program proceeds
first by setting the first parameter, « , egqual to .50, the midpoint
of its range. The program then finds, to a desired accuracy,'the
value of B which yields the minimum X2 for & equal to .5C, by
guccessive bilnary iterations. Tﬁe first step is to determiné the X2
for 8 of .25, .50 and .75. If the smallest X2 is at .25, then the
minimum (for O = .50) must be between O and .50, sc the next three
.values of B are chosen to be .125, 125, and .375. The minimum value
“from this set of three determines a new set of three, and so cn. The
number of iterations deﬁefmihes the accuracy of the estimate. After
the minimum value of B has been determined for & equal to .50,
then the minimum is determined for @ equal to .25 and .75, and the
value of ¢ yielding a minimum (for some £) then determines a new
set of & walues on which the iteraticn is performed. The process
takes considerable time for three parameters if more than two or
three place accuracy is deaired; In this study % and u are
accurate to .008, while N is accurate to .125.

The characterigtics of tﬁe eséimation procedure have not heen
fully investigated. However, from a numbér cf exploratory tests in
which a large number of iterations have been run to obtain a closer
approximation to a point-estimaie winimum value, it appears that (1)
even with a relatively low degree of accuracy, one can obtain a X2

value which differs from the point-estimate minimum by less than five
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percent of the minimum, (2) the estimates of & and B may differ
by as much as ien or £1fteen percent from the point-estimate minimum
values, While (3) ¢ and N are generally quite close, e.g. within
five percent of the point-estimste minimum.

The criterion stafistic is equivalent.to the descriptive_statistic,
X2 , and has been so denoted. If the cell frequencies were independent,
then subtracting a degree of freedcom for each.parameter, the stﬁtistic
would be distributed as X with 1 or 13 degrees of freedom for the
fifst— and second-brder dependencies respectively. However, the
transition frequencies are not independent. The unchservable states
of conditioning do, by aésumption; describe a one-trial Mafkov process;
the state of conditioning on any trial n for a given element depends
only on the state of conditioning on the preceeding trial and the
matrix of transition probabilities, and does not depend on any other
events prior to the preceeding trial. This one-trial Markov property

does not apply to the observable response events. IT Xn;l represents
the response sequence prior to trial n-1 , then N(AiJEjAk) depends
on x , where, in particﬁlar, x is partly'composed of other

n-1 n-1

cell entries. On the other hand, considering response-reinforcement
.sequenées of‘arbitrary‘léngth, it turns out that most of the informa~-
tion ébout a response on trial =n is gained by knowing what.happened
on.a relativély sﬁall number of preceeding trials; and though, strictly
speaking, the TESPONSE on any trial n 1is a function of the entire
préceeding sequence of events, the.depéndence.on events more than.a

few trials removed is very slight. Thus we will use the X2 dis-

tribution and the degrees of freedom remaining after parameter .. -
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estimation to obtain an index of the adequacy of the various models.
[See Suppes and Atkinson, 1960, for a discussion of this problem. The
convergence referred to above has been shown by Lamperti and Suppes

_ (1959) to characterize the linear model; Suppes and Atkinson (1960)
mention that for the gimple Markov mcdels considered in their book,
the parameter estimates based on the n-order sequential staﬁistics
rapidly converge tc a limiting value. Tt has not been proved that
this convergence property charscterizes the particular models analyzed
in this study.

In selecting the smaller subgroups for_analysis, there were some
cases in which the predicted cell fréquencies for the second-order
statistics are smaller (less than.five) than is appropriate for the
use of the X2 statistic. These frequencies,_which are always A2
responses, are not presented in the tables, but must be obtained by
subtracticn. In Table 11k, for example, the last line contalins the
observed and predicted frequencies for the sequence A E. A E A, . The

222271

total observed entries for this seguence, N(-|E2A2E2A2) , 1s 10, end

.the observed number of Al transitions, N(A1|E2A2E2A2) is 6. The

A
following this sequence, N(Al!E AEA ),

predicted number of A ofoE Ay

l's
from the weak-strong medel in cclumn W-S, is 7.3, and the predicted
ﬁumber of Ag's must be 2.7, since these two entries must.sum to the
observed tqtal of_lO. There are two low-frequency cells in the pre-
dictioﬁs for subgroups I-MP, II-MP and I-High, and eight low-frequency
cells in subgroup II-Eigh, all during runs 47-66.

It was not convenient to modify the estimation procedure to

correct this precblem, and the results which are presented in the
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tables gre the output from thé'computer. However, in every case in
which a set of secbnd-order statistics contains cells with frequencies
less than five, all such cells were tombined, and a separate X2

based oh fewer degrees of freedom was computed. . These X2 values
cannot be considered to be minimum values in any sense, of course,

and only a few examples of the results of these computaticns will be
presented. For all the sets of date where low-frequency entries exist,
when these cells are combined, the new X2 values present a virtually
unchanged picture of.the_correspondence between the models and the
data. Any change is usually in the direction of & slightly better fit.
For example, in group I-High, Table 12b, for the consfant parameter
.3-state model (CP—B), segquences A2E1A2E2Ai and A2E2A2E2Ai are
predicted as having 3.7 and 2.9 A2's , respectively, following them.
IT these two sequencés are combined and a new 'X2 based on 12 degrees
- of freedom is computed, the wvalue is 15.717, compared to & previous

X2 of 18.682, 13 df. Subgroup II-High contains eight low-frequency
cells for the constant parameter 3-state model. When these are com-

bined, a X2 of 4.106 based on 5 degrees of freedom is obtained,

compared with s X2 of 13.145, 13 degrees of freedom previously;






