


































































































































































Table lOa. Observed and predicted first-order sequential statistics

for subgroup I-MP (N ~ 15) during runs 47-66, J( ~ .65.

Trial Observed Predicted N(A1IE.A.)
n-l N(·IE.A.)

1 J

E.A. N(A1!E.A.) W-s CP-3 CP-l0 VP-3 Linear
1 J

1 J 1 J

1 1 12857 12164 11629.2 12206.6 12184.9 12183.0 12148.2

1 2 773 693 468.0 692·7 695.4 692.0 687·9

2 1 6702 6367 6061. 9 6362.9 6345.4 6348.6 6363.2

2 2 403 358 244.0 361.1 359·1 359·6 360.5

Total 20735 19582 18403.1 19623.2 19584·7 19583.3 19559.8

N(e) 3.34 18·70 17·63 18.11 .12

5(Pl) .01 .05 .22 .16 ·93

Il(P2) ·99 ·31 .13 .45 ·97

cp .01 .15 1. 75 .36

x2 *.j(- * 2.18 1.66827·46 3·25 ·92

A.A.D. .165 .013 .008 .005 .004
.j(- **p < .10 P < .01

Q::>
o



Table lObo Observed and predicted second-order sequential statistics

for subgroup I-MP (N = 15) during runs 47-66, " = 650

Trial Observed Predicted N(AIIEiAj~A£)

n-2 n-l N( . IEiAjEkA£) N(AIIEiAjE0£) W-s CP-3 CP-I0 VP-3
AE AE
1 1 1 1 7661 7273 7051.4 729209 731009 7297·2
11 2 1 441 399 303·9 387·6 39508 389·2
1 1 1 2 4390 4214 404007 4178.6 4173.2 4177 .2
1 1 2 2 266 240 183.3 233.5 229.4 232.2
2 1 1 1 466 426 321.1 409.6 419·2 4n.6
2 1 2 1 51 39 30·3 43.2 44.3 43.2
2 1 1 2 286 244 197·1 251.3 25507 252.1
2 1 1 1 29 27 17·2 24.5 24.2 24.4
1 2 1 1 4456 4239 4101.4 4241. 4 4237·1 4240.0
1 2 2 1 244 224 168.1 214.4 218.3 215.4
1 2 1 2 1912 18n 1759.8 1819·7 1810·7 1817·1
1 2 2 2 90 81 62.0 79·0 77·3 78.4
2 2 1 1 274 226 188.8 240.5 236.3 239·1
2 2 2 1 37 31 22.0 31.3 31.6 31.2
2 2 1 2 n4 98 78.6 100.1 98.9 99.4
2 2 2 2 18 10 10·7 15·2 14·9 15·1

Total 20735 19582 18536.3 19562·7 19576·9 19562.7

N 4.20 13.40 10.84 12.48

5 .01 .18 .55 037

"'
·99 ·98 ·31 ·99

cp .01 .18 1.75 ·37

X2 702.55** 46.92** 44.35** 44.06**

A.AoD. .157 .045 .045 .044
*p < .10 **P < .01

(p
f-'



Table lla.. Observed and predicted first-order sequential statistics

for subgroup II-MP (N = 15) during runs 47-66, 11 = .80.

Trial Observed Predicted N(A1!E.A.)
n-l l J

E.A. N(.jEiA
j

) N(A1!Ei A
j

) W-s CP-3 CP-l0 VP-3 Linear
l J

1 1 16117 15420 15421·7 154b2.4 15429·1 15430.6 15386.8

12 892 694 696.6 700·9 710·7 687·2 698.5

2 1 3938 3752 3750.1 3743.5 3729· 5 3753.8 3759·6

2 2 248 188 188.7 189·5 186.4 186.5 194.2

Total 21195 20054 20057. 2 20036.4 20055.6 20058.1 20039·2

N( 8) 5·10 5·20 4.86 4.87 ·59

o(Pl) .13 .13 .23 .20 ·95

il(P2) .16 .05 .05 .10 ·95

cp .85 2.67 4·93 2.00

x2 4.67** .54 *.08 1.21 2·97

A.A.D. .002 .004 .009 .004 .009

* **p < .10 P < .01

(Xl
[\)



Table 11b. Observed and predicted second-order sequential statistics

for subgroup II-MP (N = 15) during runs 47-66, :n: = .80.

Trial Observed Predicted N(AIIEiAjEkA£)
n-2 n-l N( .JEiA}kA£) N(AIIEiAj~A£) W-s CP-3 CP-I0 VP-3
AE AE

1 1 1 1 1;2395 11929 11923.8 11925·0 11952·7 11894.5
1 1 2 1 542 471 435.4 438·7 438.6 430.6
1 1 1 2 3040 2912 2905.4 2904.0 2900·9 2898.6
1 1 2 2 154 131 119·6 120.2 118.0 118.6
2 1 1 1 559 482 451·9 455.3 456.8 446.8
2 1 2 1 160 75 121.5 122·5 122·5 119·6
2 1 12 160 141 128.2 129·1 128.8 126.8
2 1 2 2 43 14 31.5 31.7 31.1 31.1
1 2 1 1 3008 2880 2878.0 2877·3 2876.5 2871.4
1 2 2 1 137 119 109·2 109·9 109·5 107·9
1 2 12 707 671 666.5 666.5 664.1 665.3
12 2 2 41 37 31.6 31. 7 31.0 31.3
2 2 1 1 155 129 120.4 121.0 118.7 119.8
2 2 2 1 53 29 39·9 40.4 40.4 39·4
2 2 1 2 36 28 27 ·7 27 ·9 27·2 27 ·5
2 2 22 10 6 7·3 7.4 7.2 7. 2

Total 21195 20054 19997·9 20008·7 20024.0 19936.0

N 5·30 5·50 4·98 5·22

1'> .18 .17 .23 ·31

[.l .19 .06 .05 .14

cp .96 2·75 5·00 2.22

X2 171·77** 173· 05** 175·44** 175.07**

A.A.D. .101 .098 .101 .101
*p < .10 **p < .01

OJ
w



Table 12a. Observed and predicted first-order seguential statistics

for subgroup I-HI (N = 5) during runs 47-66, :n: = .65.

Trial Observed Predicted N(AlIE.A.)
n-l l J

E.A. N( ·IE.A.) N(Al !Ei A
j

) W-s CP-3 CP-l0 VP-3 Linear
l J l J

1 1 4023 3639 3512.4 3650.2 3671. 7 3649·1 3617·6

1 2 437 383 351.6 381. 9 387 ·9 382.2 378.2

2 1 2092 1898 1826.5 1895·8 1901. 8 1894.2 1883.5

2.2 250 215 201.1 217·1 217·1 216.6 216.6

Total 6802 6135 5891. 7 6145.0 6178.5 6142.1 6095.9

N(e) 14.59 25.61 22.56 24.67 .07

5(Pl) .01 ·39 ·59 ·50 .89

f1(P2) ·99 .65 ·30 .69 ·91

cp .01 .60 2.00 ·73

x2 ** ** *77·22 ·57 4.12 .48 2·93

A.A.D. .048 .003 .011 .003 .007

* "*p < .10 P < .01

CD
+0-



Table 12b. Observed and predicted second-order seguential statistics

for subgroup I-IIT (N = 5) during runs 47-66, :It = .65.

Trial Observed Predicted N(AlIEiAjEkA£)

n-2 n-l N(' IEiAj~A£) N( A1 1 EiAjEkA£) W-s CP-3 CP-l0 VP-3
AE AE
1 1 1 1 2288 2084 2021.1 2086.4 2104·9 2090.2
1 1 2 1 239 218 193.4 207·5 211.1 209·2
1 1 1 2 1321 1207 1166·9 1201.1 1208.7 1200·5
1 1 2 2 155 138 125.4 132.4 132·7 131.8
2 1 1 1 261 235 211.2 226.8 230.8 228·7
2 1 2 1 35 27 26.5 . 29·3 29·9 29·6
2 1 1 2 143 118 115·7 123.8 125.6 124.3
2 1 2 2 21 18 15·9 17·3 17·4 17·2
1 2 1 1 1315 li88 1161.6 1195.6 1203.6 1195·1
1 2 2 1 137 118 1l0.8 118·7 120.4 119·5
1 2 1 2 563 515 497.3 510.2 512.4 508.6
1 2 2 2 58 49 46·9 49.4 49·4 49.0
2 2 2 1 159 132 128.6 135·9 136.1 135.2
2 2 2 1 26 20 19·7 21. 5 21;9 21.4
2 2 12 65 58 52.6 55.4 55·3 54·9
2 2 2 2 16 10 12.1 13·1 13·1 13·0

Total 6802 6135 5909·2 6124.2 6173.2 6128.1

N 13·30 17·29 15·53 15.65

0 .01 .63 .58 ·71

I.l ·99 ·99 .29 ·96

qJ .01 .63 2.00 ·74

x2 85.48** 18.68 * 18.4022.16

. A.A.D. .053 .037 .039 .037
*p < .10 **p < .01

OJ
Vl



Table 13a. Observed and predicted first-order sequential statistics

for subgroup I-LO (N ~ 3) during runs 47-66, 1C ~ .65.

Trial Observed Predicted N(AlIE.A.)
n-l 1 J

E.A. N('IEiA j ) N(Al !Ei A
j

) W-s CP-3 CP-l0 VP-3 Linear
1 J

1 1 1867 1327 1360.9 1364.4 1366.1 1361.1 1351.4

1 2 959 634 604.1 607·2 625.2 604.2 596·7

2 1 1042 711 678.3 679·9 664.3 678.6 677·9

2 2 494 233 269·5 270.4 270·9 269·6 271.2

Total 4362 2905 2912.8 2921.8 2926.4 2913·5 2897.2

N(8) 5.45 5·50 5.45 5·45 .23

o(Pl) .48 .48 ·59 .48 ·77

Il(P2) .03 .03 .04 .03 .46

cp 15·25 15·50 15·00 15·25

X2 ** ** ** ** **22.48 22·57 25·29 22.48 24.31

A.A.D. .039 .038 .039 .039 .040

* **p < .10 P < .01

~



Table 13b. Observed and predicted second-order sequential statistics

for subgroup I-LO (N = 3) during runs 47-66, :IT = .65.

Trial Observed Predicted N(AIIEiAjEkAg)
n-2 n-l N(' IEiAj~A,g) N(AIIEiAjEkA,g) W-s CP-3 CP-I0 VP-3
AE AE

1 1 1 1 833 646 653.5 656.5 665.3 653.6
1 1 2 1 344 244 223.4 224.2 245.1 223·5
1 1 1 2 500 380 368.6 369·3 354.8 368.6
1 1 2 2 207 105 123.8 123·7 125.6 123·9
2 1 1 1 396 235 260.2 261.3 284.6 260.2
2 1 2 1 20:1- 125 105·9 106.1 124.4 105·9
2 1 1 2 238 122 144.9 145.0 148·7 145.0
2 1 2 2 120 53 57·1 56.8 61.6 57·1
12 1 1 474 359 356.1 357·2 346.6 356.2
1 2 2 1 227 174 136.0 136.0 143.0 136.0
1 2 1 2 231 166 162.5 162.5 148.0 162.6
1 2 2 2 96 46 52.6 52·3 50.2 52.6
2 2 1 1 164 87 98.1 98.0 99·5 98.1
2 2 2 1 187 91 94.2 94.2 105·7 94.2
2 2 1 2 73 43 40.2 40.0 37·7 40.2
2 2 2 2 71 29 32.1 31.9 32.8 32.1

Total 4362 2905 2909·3 2914.8 2973.6 2909·8
N 4.87 4·70 4·75 4.87

5 .26 .27 ·53 .26

~ .02 .02 .05 .02

cp 16.50 17·00 9·71 16.50

X2 71.53** 71.55** 101.22** 71.53**
A.A.D. .056 .056 .061 .056
*p < .10 **P < .01

ss



Table 14a;- Observed and predicted first-order sequential statistics

for subgroup II-HI (N = 6) during runs 47-66, J1 = .80.

Trial Observed Predicted N(AlIE.A.)
n-l l J

N(·IE.A.) N( Al IE.A.) W-s CP-3 CP-l0 VP-3 LinearE.A. l J l J
l J

1 1 5960 5747 5748·9 5754.4 5752.1 5759·4 5716.4

1 2 228 215 211.1 213.6 213·2 213.8 209·3

2 1 1451 1399 1396.2 1393·0 1393·0 1394·7 1383·9

2 2 62 54 56.5 55·9 56.0 56.0 56.6

Total 7701 7415 7412.6 7416.8 7414.3 7423·9 7366.2

N(8) 18.57 15·50 16.00 15.88 .09

o(Pl) .44 .64 ·55 .64 ·97

\l(P2) ·99 .34 .13 .41 ·91

cp .44 1.91 4.38 1.55

x2 **2.35 1. 70 1.69 1.98 10.82

A.A.D. .015 .010 .010 .011 .021

* **P < .10 P < .01

85



Table 14b. Observed and predicted second-order sequential statistics
for subgroup II-HI (N = 6) during runs 47-66, :It = .80.

Trial Observed Predicted (NA1 !EiAj V,e)
n-2 n-l N(' IEiAjEkA,e) N(AIIEiAjEkA,e) W-s CP-3 CP"10 VP-3
AE AE,

1 1 1 1 4614 4465 4460.8 4470.4 4476.0 4474.3
1 1 2 1 166 159 151·9 154.2 154.3 154·7
1 1 12 1132 1091 1090·5 1088·7 1090·5 1087·6
1 1 2 2 49 44 43.2 43.2 43.3 43.2
2 1 1 1 171 157 156·7 159·1 159·3 159·6
2 1 2 1 11 10 9.8 10.0 10.0 10.0
2 1 1 2 52 50 47·4 47.9 48.0 48.0
2 1 2 2 4 3 3·5 3.4 3·5 3·5
12 1 1 1127 1084 1085·7 1084.4 1086.3 1085.4
1~2 2 1 42 40 38.3 38.8 38.8 38.9
1 2 1 2 260 25L 249·2 248.1 248.8 248.3
1 2 2 2 8 6 7·1 7·0 7·0 7·0
2 2 1 1 48 41 42.8 42.3 42.4 42.4
2 2 2 1 9 6 7·9 8.0 8.1 8.0
2 2 1 2 7 7 6.2 6.1 6.1 6.1
2 2 2 2 1 1 ·9 ·9 ·9 ·9
Total 7701 7415 7402.4 7412.6 7432. 2 7420 .4

N 13·30 11.40 11.55 11.55

5 .47 .62 .56 .66

fl ·99 ·32 .13 .42

cp .47 1·93 4.34 1.56

x2 14.18 13.14 14.25 13·21
A.A.D. .057 .056 .057 .056
*p < .10 **:p < .01

co
\D



Table 15a. Observed and predicted first-order sequential statistics

for subgroup II-LO (N = 6) during runs 47-66, rc = .80.

Trial Observed Predicted N(A1IE.A.)
n-l 1 J

E.A. N( ·IE.A.) N(AIIEiAj) W-s CP-3 CP-I0 VP-3 Linear
1 J 1 J

1 1 5811 5251 5254.8 5257·7 5262.0 5254.6 5228.4

1 2 721 591 590.0 595·0 593·1 591. 7 581.6

2 1 1426 1265 1261.1 1260.3 1271·9 1263.3 1250.1

2 2 191 147 148.6 149.4 151·7 149·6 149·7

Total 8149 7254 7254·5 7262.3 7278 .7 7259. 2 7209·9

N(e) 7·91 8.10 8·97 8.27 .21

5(Pl) .34 ·37 .27 ·33 .96

fl(P2) .10 .06 .04 .08 .80

'1' 3.38 5.88 7·39 4.20

X2 *.22 ·57 1. 33 .26 3.41

A.A.D. .003 .004 .008 .004 .010

* **P < .10 P < .01

'8



Table 15b. Observed and p~adicted second-order sequential statistics

for subgroup II-LO (N ~ 6) during runs 47-66, :r( ~ .80

Trial Observed Predicted N(AlIEiAjEkA£)
n-2 n-l N( . IEiAjEkA£) N(AlIEiAjEkA£) W-S CP-3 CP-l0 VP-3
AE AE

1 1 1 1 4192 3813 3826·9 3825·7 3839·6 3830·9
1 1 2 1 450 377 374·7 374·9 375· 5 375·3
1 1 1 2 1029 931 923·5 924.0 928.5 917·1
1 1 2 2 115 93 92.2 92.4 92·7 92.3
2 1 1 1 487 423 406.8 406.9 407.6 407.5
2 1 2 1 112 79 87·6 87·7 87 ·9 87.8
2 1 12 120 97 98.3 98.4 98·7 98.5
2 1 2 2 27 13 20.3 20·3 20.4 20·3
1 2 1 1 1025 927 921·7 922.1 926.6 922·7
1 2 2 1 122 106 99.8 99·9 100.2 99·9
1 2 12 234 207 206·7 207·1 208.3 207·0
1 2 2. 2 39 33 30·7 30.8 30·9 30·7
2 2 1 1 107 88 85.8 86.0 86.2 85·9
2 2 2 1 37 29 28.6 28.6 28·7 28.6
2 2 1 2 43 30 33.8 33·9 34.1 33.8
2 2 2 2 10 8 7·4 7·4 7·5 7·4
Total 8149 7254 7244.8 7246.1 7273.4 7253·3
N 8.85 9·02 8·97 8.85

6 .30 .28 .27 ·30

fJ. .09 .05 .. 04 .07

cp 3.45 6.03 7·39 4.22

X2 25.46** 25.46** 26.60** 25.53**

A.A.D. .044 .044 .044 .044
*p < .10 **P < .01

\0
f-'



predictions from the modified linear operator model in the column

headed Linear. The parameter estimates and the minimum x2 value are

also given. Also, the observed second-order frequencies,

N(AIIEiAjEkA£) , are presented, together with the predicted frequencies

from the weak-strong and constant parameter (k ~ 3 ,10) models.

For the homogeneous subgroups, the predictions of first- and second-

order frequencies from the 3-state model incorporating the variable

parameter assumption are also presented in the column headed VP-3.

It should be noted that the transition frequencies are presented

instead of the transition probabilities. The frequencies are more

informative in this case, since a numerical estimation procedure

yielding a minimum X2 estimate was used. The normalizing frequencies,

allowing recovery of the transition probabilities. Moreover, because

of the limited space, only the observed and predicted Al transition

frequencies are presented, and the A2 frequencie~ can be obtained

from the normalizing frequencies. The average absolute deviations

(A.A.D.) have been computed and are presented for comparison with the

X2 values.

The observed first-order transition matrices were used to obtain

parameter estimates in the following manner. There are eight cell

entries in the first-order transition matrix which may be used for

estimation purposes. Parameter estimates will be obtained from the

observed conditional statistics, and it will be required that the pre-

dieted transition frequencies in each row sum to the observed value

N( 0 IEiA.) thus reducing the available degrees of freedom from seven
J
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to four. In all of the analyses, it is assumed that e = 6, i.e.,

that cQunterconditioning is equivalent toa weakening process. Thus

it is necessary to estimate three parameters, 6, ~ ,and N. Sub-

ject to the restraint mentioned above, values of the parameters are

chosen which minimize the sum of normalized squared deviations of the

predicted cell transition frequencies from the observed frequencies.

A
Thus, if N(AiIEjAk) is the predicted number of transitions in the

i th column and the (j,k) th row, obtained by the relation

~(AiIEjAk)N(' IEjAk ) ,where ~(AiIEj~) is a function of 6 ~,

and N, then we seek those values of 6 , ~ , and N which minimize

93

the function:

=i,j ,k
[20J

The parameter values yielding the minimum value of this function

were determined numerically, using the IBM 7090, by means of a binary-

search technique developed by the"programming staff of the Institute

for Mathematical Studies in the Social Sciences at Stanford University.

The same procedure was followed in obtaining parameter estimates

based on the second-order statistics; i.e., it is required that the

predicted transition frequencies in each row sum to the total observed

This restriction reduces to 16 the

degrees of freedom, and the estimation of three parameters further

reduces the degrees of freedom to 13.

Parameter estimates were obtained separately for the first- and

second-order statistics for the k-state models because on the one

hand, it was desirable to obtain a fit using the first-order



statistics for estimation, to allow comparison with the linear model,

and on the other hand, we were interested in evaluating the fit of

k-state model to the second order statistics using the best possible

*estimate.

Summary of sequential statistics. The results presented in Tables

4-16 may be summarized by the following statements:

1) When the transition frequencies are accumulated over all

subjects in Group I or Group II (Tables 4, 5, 8, and 9), neither

the k-state models or linear models are very successful in

accounting for the data. The linear model provides unsatisfactory

fits of the first-order statistics in every case. The weak-strong

model and the 3-state model account rather well for the first­

order statistics of Group II during Runs 11-20 and Runs 47-66.

However, the models break down when applied to the first-order

statistics of Group I, or to any of the second-order statistics

of Group I or Group II.

2) In the eight cases where the models are applied to homogeneous

subgroups (Tables 6, 7, and 10-15) the weak-strong model provides

a relatively adequate fit to the first-order statistics in four

cases (Tables 7a, lla, 14a, and 15a), the 3-state model in five

cases (all except Tables 6a, lOa, and 13a), and the 10-state

*See Appendix B for further details on the estimation procedure.

Special thanks are due to the programmers at the Institute, C. Larson,

R. Miller and W. Phillips, for their invaluable assistance in reduction

and analysis of the data.



model in three cases (Tables 7a, 14a and 15a). The 3-state models

incorporating the constant and variable parameter assumptions

provide quite similar fits in most cases, although the variable

parameter model is generally a little better (Tables 6a and 14a

are exceptions), and in one case (Table lOa), the fit is markedly

better. The linear model can account relatively well for two sets

of data (Tables 7a and lOa). When the 3-state model was applied

to the second-order statistics, a relatively good fit was obtained

in two cases (Tables 12b and 14b), and in four other data sets,

the agreement between the model and the data was not too bad by

conventional standards (Tables 7b, lOb, 13b, and 15b). Again, it

made little di~ference whether the models incorporated the con­

stant or variable parameter assumption, and there was not even a

slight indication that one assumption might be more appropriate

than the other.

3) Considering the k-state models, if the mean response probabil­

ity is outside or near the bounds of a model for some particular

value of k, then the fit of the model is quite poor. Thus, the

reason that the first-order statistics are inadequately represent­

ed by the weak-strong model in two of the subgroups (Tables lOa

and 12a) is that the mean response probability exceeded the upper

bound of this model. If a higher bound is obtained by using the

3-state model, the data can be accounted for rather well. In the

remaining instance where the weak-strong model gives a poor fit

(Table 13a), none of the models proves to be adequate, apparently

because P(A
l

) is close to rt , the lower bound of the models.
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(While the conjecture above has not been proved, it is worth

remarking that. for a number of sets of data from human two-choice

experiments which. are not discussed in this paper, when the k-state

models are applied to the data, the same deterioration of the fit

of the models has been noticed when P(A
l

) is close to the upper

of lower bound of the model for some k.)

4) In the cases where some k-state model provides a fair account

of the data, parameter estimates based on the first-order statis­

tics may differ somewhat from those estimates based on the second­

order statistics. The parameter ~,which is the ratio of 6 to

~ , remains relatively invariant, but the actual values of 6 and

~ may vary considerably. The number of stimulus elements, N

is well behaved in most cases, but may sometimes range consider­

ably, depending on the statistic used for estimation, especially,

it appears, if the estimate exceeds 10 (c.f. Tables 10, 12, and

14) .

Reinforcement-run statistics. The third- and fourth-order reinforce-

ment-run statistics, N(AIIEiEiEj) and N(AIIEiEiEiEj) , i, j = 1, 2,

i t j , were obtained for subgroups I-MP and II-MP during Runs 11-20

and during Runs 47-66, and also for the high and low subgroups during

Runs 47-66. These frequencies and the normalizing frequencies are

presented in Table 16, along with predictions based on the 3-state

model with the constant parameter assumption, where the parameter es­

timates were based on the second-order sequential statistics. Thus,

one degree of freedom is available in each cell to test the fit of

the model. Two cells are empty in this table because of insufficient
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A
2

observations following the reinforcement sequence. Of the 30 re­

maining cells in this table where predictions have been made, only

three cells contain deviations of the predicted from the observed

values large enough to produce a X2 significant at the .10 level.

The swn of the 30 X2 ,s is 41.49617; a value this large or larger

can be expected about ten percent of the time with 30 degrees of free-

dom.

Also presented in Table 16 are the second-order statistics,

P(A1IE,E.) , which are presented in order that the recency effect may
l J

be observed. Very often, with untrained human subjects, a negative

recency effect, the so-called "gamblers fallacy," has been noted. In

this study, however, ·'there.,is;:usually speaking, a positive recency

effect, which most models would predict; as the response on trial n

97

is conditionalized on longer sequences of E.
l

events, there is an

increase in the probability of an Ai response on trial n There

are two exceptions to the positive recency effect. First of all,

there are perturbations in the El recency e.ffect during 50-50

training, in that P(Al !E1E2 ) is greater than P(AlIE1E1E2) , while

the reverse relation should hold. The inversion is disturbing,

though the difference between theory and data are not statistically

significant.

The second exception concerns the relation between the relative

effects of runs of El and E2 events. In general, for :J( > .50 ,

P(Al ) is constant over varying lengths of E
l

event runs, while

P(Al ) decreases over varying lengths of E
2

event runs. Inother

words, a series of El reinforcements does not increase the A
l



Group "

I-MP .50

II-MP .50

I-MP .65

II-MP .80

I-lIT .65

I-LO .65

II-lIT .80

II-LO .80

Note.

Table 16a. Observed and predicted El reinforcement-run

statistics for selected subgroups.

Reinforcement sequenc,e, trial n,·k, n-k+l, ... n-l

E2El E2EI EI
.' E2EIEI El

Observed Observed Predicted Observed -Predicted

N(o) N(Al ) peAl) N( . ) N(Al ) P(A1) N(Al ) peAl) N( . ) N(Al ) peAl) N(Al ) peAl)
,

2106 1123 ·5332 1345 693 ·5152 710.2 .5280 727 396 .5447 406.2 .5587

2082 1099 .5278 1344 699 ·5201 710·9 ·5290 737 403 . .5468 396.7 .5382

5011 4720 .9419 3196 3014 ·9431 3017·0 .9440 2059 1949 ·9466 1943·7 ·9440

3353 3157 ·9415 2730 2585 .9469 2567·2 ·9494 2136 2010 ·9410 2012.2 .9421

1637 1458 ,8906 1093 997 ·9122 984.8 ·9010 678 620 ·9145 611.8 ·9024

1052 711 .6758 652 435 .6672 438.4 .6734 401 295 ·7357 276.6· .6899

1226 1171 ·9551 1036 990 ·9556 994.2 ·9597 811 780 ·9618 779·8 ·9616-

1291 1150 .8907 1076 955 .8876 953.6 .8862 839 748 .8915 745.4 .8884

Predictions are from the 3-state model with a constant parameter assumption, using

parameter estimates based on the second-order sequential statistics.

* 2X , P < .10

\0
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Group :n:

I-!'1P ·50

II-!'1P .50

I-!'1P .65

II-!'1P .80

I-HI ,65

I-LO .65

II-HI ,80

II-LO .80

Table 16b. Observed and predicted E2 reinforcement-run

statistics for selected subgroups

Reinforcement sequence, trial n-k, n-k+l,.,.n-l

E1E2 E1E2E2 E1E2E2E2

Observed Observed Predicted Observed Predicted

N( 0) N(A1 ) P(A1) N(' ) N(A1) P(A1) N(A1 ) P(A1 ) N( .) N(A1 ) P(A1) N(A1 ) P(A1)

2093 986 .4710 1358 618 .4551 640·9 .4720 698 304 .4355 308.1 .4413

2069 1033 .4992 1322 631 .4773 622·7 .4710 695 330 .4748 320·9 .4617

4971 4725 ,9505 1440 1347 .9354 1358.9 .9437 586 530 ,9044 552.4* .9427

3397 3198 ,9414 700 660 ,9429 652.3 ,9319 110 100 ·9091 101.8 ·9252

1640 1481 ·9030 489 438 .8957 438.6 ,8970 204 177 .8677 182.4 .8942

1065 660 .6197 303 189 ,6238 187·6 .6191 118 69 .5847 69,4 ,5885

1237 1188 ·9603

·7609 * .86891291 1134 .8783 281 240 .8541 2463 .8766 46 35 40.0

Note.--Predictions are from the 3-state model with a constant parameter assumption, using

parameter estimates based on the second-order sequential statistics. Empty cells indicate

insufficient observations, N(A2) < 5· * 2X , P < .10

'D
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probability, while a series of E
2

reinforcements does decrease the

Al probability. This asymmetvy of the classes of reinforcement events,

which is predicted by the k-state models for k > 2 , will be consider­

ed further in the next chapter.
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Discussion

In this final section, we will comment on ce.tain p.oblems which

a.ose dU.ingthe cou.se of the study, and make explicit ce.tain aspects

of the study which we feel to be significant. First we will take up

the matter of response bias, a possible manner in which this bias

might be taken into account in the k-state models, and the probable

effects of bias in this study, in terms of the fit of the model to the

data. Next there will follow some comments on the selection procedures

which were used to pick out the various subgroups. By way of compar­

ing the two general classes of models which have been considered, viz.,

linear and k-state Markov models, the relative inadequacy of the mod­

ification of the linear model which was proposed will be considered,

and the section will conclude with a consideration of some problems

related to evaluation and comparison of the various specific models

included under the heading of k-state models.

Response bias. Well over half the sUbjects in this experiment exhib­

ited marked response biases during the 50-50 schedule, selecting one

response or the other more than 80 per cent of the time during a

block of over 1000 trials. An examination of the response counts

during the preliminary 50-50 training, for which no punch-card record

is available, indicates that the biases were evident in most instances

virtually from the beginning of the two-response task, and these

biases were consistent during the entire course of the 50-50 schedule.

These results are comparable to those obtained by a number of other

investigators; e.g. Witte (1959) found extreme bias in approximately

two-thirds of a large group of albino rats (N = 171) run in a two-
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choice T-maze under a 50-50 schedUle.

It is possible, of course, to modify any of the Markov models to

include a neutral state, where it is assumed that the animal responds

according to some biasing rule if a sampled element is in the neutral

conditioned state. This development has not been carried through in

the present paper because of two partially related difficulties which

seem inherent in any model incorporating a neutral state. First, with

the exception of the mean response probability, P(Al ) , which has a

fairly simple form, all theoretical expressions of the sort derived

earlier in this paper become considerably more complex when one adds a

neutral state. Secondly, the estimation of parameters becomes much

more difficult, in part because of the increase in the complexity of

the theoretical expressions, but also because as one increases the

number of parameters, the computer time required to obtain estimates

increases exponentially,.

Actually, the state of affairs is not as bad as it might seem.

For assumptions of the sort which were considered, it turns out that

the probability that an element is in the neutral state reaches a max­

imum when n is .50. (An analogous result which was proved for the

k-state models is that the probability that an element is in a weak

state of conditioning reaches a maximum when n is .50.) The failure

to take the bias into account should be most noticeable during the

50-50 schedule, but the models should prove fairly adequate for the

other schedules. In the absence of particular interest in the bias

phenomenon, it is unfortunate that efforts to minimize bias in the

apparatus were not more successful, since, e.g., the existence of
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marked biases greatly complicated the evaluation of the manner in

which parameters might vary as a function of IT •

Selection of subgroups. Two different procedures were used to select

homogeneous subgroups, First, those subjects showing the least bias

during the 50-50 schedule were selected. Secondly, subgroups of

subjects whose mean response probability was similar during the 65-35

and 80-20 schedules were formed. These two selection procedures are

not independent, but the first procedure is more sensitive to bias,

while the second procedure is more sensitive to similarity of condi­

tioning parameters. (More properly, the second procedure selects sub­

jects having a common value of ~,the ratio of the conditioning

parameters.) The second procedure produced the better results, con­

sidering the 65-35 and 80-20 data, which indicates that the existence

of initial biases may indeed not be too important if the reinforcement

schedule and mean response probabilities are not close to .50.

Moreover, the poorer fits for the large groups, which are com­

posed of subjects whose conditioning parameters may be presumed to

vary rather widely, points out that adequate tests of a model may re­

quire that the assumptions of the model be closely met. The k-state

and linear models constitute descriptions of the behavior of individ­

ual subjects, and cannot necessarily be expected to account adequately

for the behavior of a group of orgl3,nisms exhibiting widely disparate

behavior. Neither of the selection procedures which were used guaran­

tees in any way that the models will fit, since the criteria for sel­

ection are not directly related to the statistics used to test the

models; the selection procedures used the mean response probability,
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while sequential statistics were used to evaluate the models.

Linear model. The linear model has been given relatively brief treat­

ment in this paper. The task of deriving the second-order sequential

statistics has not been attempted and the generalization of the linear

model which was presented represents only one of a variety of modifi­

cations which might be examined. It was analyzed because it has an

intui.tive interpretation in terms of memory for past events, yet

retains a simple form. Elf and large, the linear model was less ade­

quate than the Markov models, and the reasons for the poorer fits pro­

vided by the linear model are fairly easy to point out.

First, an examination of Eq. 15-18 will show that the linear model

predicts that

I.e., the effects of the E
l

and E
2

reinforcement events are pre­

dicted to be symmetrical, in the sense that the events are equally

effective in changing response probability, if the effect is condi­

tionalized on the response which occurred. However, it is a character­

istic of the data that, for ~ not equal to .50, the left-hand side

of Eq. 21 is much smaller than the right-hand side. The differential

effect of the reinforcements on the response probability on trial n,

given that an Al had occurred on trial n - 1 , was very slight,

while the differential effects of the reinforcements, given that an

A2 had occurred on trial n ~ 1 , was considerably greater. In

particular, if an A2 occurred on trial n - 1 , and was reinforced,

there was a sizable decrement in the probability of an Al on trial n.
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The difference between the right- and left-hand sides of Eg. 21 were

computed for the homogeneous subgroups where n was equal to .65 and

.80. These differences are all negative, and range from -.0121 and

-.1610. There is only one inversion in the rank orderings of the size
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of the difference above and the value of from the linear model

for these sets of data; in general, as the asymmetry of the reinforce­

ment effects increases, as represented by these differences just

described, the fit of the linear model to the data becomes worse.

A second problem with the linear model is best illustrated by

referring to data from the MP groups under the 50-50 schedule (Tables

6a and 7a). There was some possibility that the modified linear model

might be superior to the k-state models in accounting for these data,

since the k-state models must predict that the mean response probabil­

ity is exactly equal to .50, given a 50-50 reinforcement schedule,

while the mean response probability predicted by the modified linear

model may vary between 0 and 1, depending on Pl and P2 The

deviation of the group mean from .50 during this schedule was not

large, but the linear model can predict this deviation, while the

k-state model cannot. Reference to Tables 6a and 7a will show that

for Group II-MP, the fit of the linear model is good, while for I-MP,

the fit is very poor. The fit of the linear model to the larger groups,

I and II, is considerably worse than the fit of the k-state models.

The problem appears to be that in computing V2 ' homogeneity of

the sUbjects is assumed, in the sense that all the subjects may be

described by the same set of parameter values. The subjects in II-MP

appear relatively homogeneous, the subjects in I-MP are less



homogeneous, and there is wide variability in Groups I and II; this

relationship parallels exactly the relative adequacy of the linear

model. The second raw moment, V2 , is estimated under the assumption

that the population of subjects is homogeneous, and the observed

heterogeneity results in too small an estimate of V2 . The effect of

the underestimation is that it becomes impossible to account for the

response perseveration which is observed in the hetergeneous groups.

Elf response perseveration is meant the tendency to repeat the

previous response is very large, compared to the reinforcement effects,

or P(Al!EiAl ) - P(Al !Ei A2 ) is large, relative to the difference,

P(Al!ElA.) - P(AIIE2A.) for any E. and A..J . J l J

By considering Eq. 15, one can see that if TI is ·50, and VI

is also close to .50, then in order for P(AIIEIAl) to become relative­

ly large, 8P
l

must be large, since the remaining term, (1-8)V2 ,

VI
reaches a maximum value of approximately .30, for any value of P,
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at 8
~

2 _1/ 2 . But if the reinforcement effect is relatively

small, (e.g., if Ip(Al!ElAj ) - P(Al [E2Aj J[ is less than .10 for all

Aj ) then 8(P
l

-P2 ) must be small. If 8 is set equal to 2 -~,

and if P(AIIEIAl) - P(AIIE2Al) < .10 , as is observed in the data,

then PI - P2 must be around .15 to account for this difference.

Hence PI must be approximately .57, since P (or VI) is close to

.50 by assumption. With these choices of the parameter values,

P(AII EIAl ) is predicted to be about .63, while the observed value of

P(Al!ElAl ) , in those cases where the fit is bad, is greater than .63



by quite a bit; the same type of problem is affecting the other

cell entries, of course. If V
2

were estimated separately, in such

a manner that its value reflected the heterogeneity of the subjects,

it would presumably be larger, (1-8)V2 would be larger, and the fit

VI

of the model should be improved. Another course of action might be

to apply the model to individual subjects.

Comparison of k-scate models. Turning to a comparison of the class of

k~state Markov models, we want to consider the questions, (1) can one

find an optimal value (or values) for k, and (2) what are the

relative merits of the constant and variable parameter assumptions?

While a partial answer to these questions was indicated in the summary

comments on the sequential statistics, there are a number of further

considerations which are of interest.

With regard to the first question, recall that as k is in-

creased, the upper bound on response probability increases, tending

toward 1 as k becomes large. As long as k is sufficiently large

sO that the observed mean response probability falls between the upper

bound determined by k and the lower bound of 11: , then it appears

that k m§y take on a fairly wide range of values without drastically

changing the fit of the model to a given set of data. Using the

constant parameter assumption the data of the homogeneous subgroups

were fitted with models for which k was set equal to 3, 4, 5, and

10, as well as the weak-strong model. The results from the weak-

strong, 3-state and 10~state models are presented in the tables of

sequential statistics. Overall, the 3-stace model does the best job
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of accounting for the data. The reasons for the relative inadequacy

of the weak-strong model relative to these data have been discussed.

Comparing the 3-state and 10-state models, the first-order statistics

are generally handled better by the 3-state model, but the difference

between the second-order X2 values for the two models over eight

sets of data is usually less than five per cent for each set of data.

Sometimes the 3-state model is slightly better, and sometimes the

10-state model is a little better, but in no case is the difference in

the fit of the two models large enough to take seriously. Moreover,

although the details of the results will not be presented, the same

remarks also apply to comparisons of the 4-state and 5-state models

with the 3-state model. Thus for values of k as large as 10,

there is no clearcut evidence favoring any particular value of k as

being an optimal value.

Concerning the question of the constant and variable parameter

assumptions, the situation is qUite similar. That is, comparing the

3-state model incorporating the variable parameter assumption with

the 3-state constant parameter model, the predictions from the two

models are not very different, and the x2 values are consequently

of the same order of magnitude for any set of data. This agreement

between models in the k,-state class also holds for the 4- and 5-state

models. Thus, although it would appear that different assumptions

are being made about the nature of the underlying conditioning pro­

cesses, it is not possible from these data to choose between the two

assumptions.
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teen sequences did constitute more than half the total

Sources of discrepancy. Considering in more detail the fit of the

3-state constant parameter model to the data, it may be possible to

determine the exact way in which the model does not agree with the

second-order sequential statistics from the homogeneous subgroups.

Looking at Tables 6b, 7b, and lOb through 15b, the discrepancy between

the model and these sets of data is reflected in a X2 of about

432, with 104 degrees of freedom. The contribution to this X2 of

each of the sixteen pairs of sequential statistics, N(A1IEiAjEkA£)

and N(A2IEiAjEkA£) , summed over all data sets, was determined in

order to find whether some of the sequences were making a consistently

larger contribution to the total X2 than others. Five of the six­

X2 and the,
discrepancy between predicted and observed values for these particular

sequences always tended to be in the same direction within each

sequence, with no significant exceptions.

Following the sequences A2E~2El' A2E1A2E2 , and A2E2A2El ,

an A2 tended to be observed on the next trial more frequently than

the model predicts. I.e., there was more A2 perseveration, regard-

less of the occurence of El events, than the theory predicts. The

contribution to the overall X2 of this perseverative facto~which

may reflect position preferences, was about 162. As mentioned pre-

viously, the k-state model, for ~ not equal to .50, predicts in-

creased perseveration on the Al response as the mean response

probability increases. But if an A
2

occurs on any trial, it is most

probable that the sampled element is in a weak state of conditioning

to the A2 response; if an E
l

follows the A
2

, then with
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probability e the element will change to a weak state of condition-

ing to the Al response, and hence an Al will occur on the next

trial on which the element is sampled. On the average, then, persever-

ation on the A2 response should be reduced by the occurrence of an

no

e is not small. In the data, however, the tendency of the

animal to perseverate on the A
2

response, regardless of the occur­

nonce of an EI reinforcement, was greater than predicted.

predicted, and following the sequence A 's
I

were

observed than predicted. In both these sequences, the subject makes

an A. which is not reinforced, and switches to the alternate
l

response, A. , on the following trial.
J

The is not reinforced

either, and following this pair of incorrect responses, the subject

switches back to Ai more frequently than the theory predicts. The

contribution of these two sequences to the total x2 was about 75.

In all of the models, it has been assumed that the effects of the

reinforcement events are independent of the preceding response and

reinforcement events. One way of viewing this perturbation between

model and data from a theoretical standpoint, might be in terms of a

dependence between the reinforcement effect and preceding events.

One might assume, for example, that the effect of the reinforcement

event on trial n might depend on whether the response on the pre-

ceding trial had been correct or incorrect. An assumption of this

sort would result in enormous complications in analysis of the models

and we will not pursue the matter in any detail. However, the se-

quences mentioned above, as well as the sequences A
I
E

2
A

I
E2 , and



A2E
1
A

2
E

l
' all of which constitute sequences of two consecutive trials

on which the subject makes an incorrect response, seem to indicate

that the reinforcement event following the second incorrect response

is more effective than the theory predicts, bringing into question the

assumption of independence of the reinforcement events.

Although considering the overall X2 value, the k-state models

did not give a totally satisfactory account of the response-reinforce­

ment pairs, the reinforcement-run statistics are fit rather well by

the 3-state model and this result is due to a property of the data

which the model predicts. As mentioned in the Results section, for

the 65-35 and 80-20 schedules, there is a marked asymmetry between

the effects of runs of E
l

events compared to runs of E2 events.

As the response on trial n is conditionalized on longer and longer

runs of E
l

events, the response probability remains virtually

constant, as the model predicts it should, given the values of the

parameters which best describe the second-order sequential dependen­

cies. [It is estimated that there are a fair number of elements in
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the population, most of which are conditioned to A
l

if an element

is conditioned to A2 at the start of the run, in order to increase

the Al probability, it must counter-condition during the run of

El events,which is unlikely since 0 is small and N is large.]

But as the response is conditionalized on longer and longer runs of

E2 events, there is an increasing decrement in the prob",bili ty of

an Al , which the model also predicts. [Since ~ is also fairly

small, many of the elements which are conditioned to A
l

are in the

weak state, "'nd thus even though 0 may be small, there is a



relatively good chance that the element sampled on trial n was

initially weakly conditioned to A
l

and counterconditioned during

the run of E
2

events.]

Asymptotes and analysis. The overall response pro'babili ty in this

study was very high. A number of subjects chose one response alterna­

tive on more than 99 percent of the trials during Runs 47-66. The

analysis of variance indicates that the response probability was still

climbing, and it is not inconceivable that the asymptote for all the

subjects might prove to be 1 or 0 eventually, although millions of

trials might be reguired in some cases to reach these final levels.

The tendency of subjects to absorb on a single response alternative

during long term training has also been noticed in a study using human

subjects by Bourne (1963). In a two-choice study using human subjects

by Friedman, Burke, Cole, Keller, Millward and Estes (1962), there

was some evidence of an upward trend in the response probability of

trained subjects following a long series of trials with n of .80,

although the trend was not significant.

There are numerous models which can predict an asymptote of 1 or 0

for values of n other than. 50. The simple linear model can be inter­

preted to predict this result, as can the modified linear model. The

upper bound on the k-state models rapidly reaches a value which cannot

'be distinguished from 1 for reinforcement schedules other than 50-50;

e.g., for both the reinforcement schedules which were used in the

second portion of the study, the upper bound for the 5-state model is

greater than .9999. However, the asymptotic data of subjects who

absorb on a response alternative do not permit a choice between
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alternative models.

Thus attention has been concentrated on subgroups of subjects

whose behavior over a block of trials appears relatively stable at

some value between rt and 1. A class of Markov models based on

reinforcement principles has been analyzed, showing that within

appropriate boundary conditions, models from this class give a fair

account of the sequential statistics from these selected subgroups,

compared to an alternative linear model. From strict statistical

considerations, the models might be rejected, since, e.g., for the

3-state model from this class, the overall X
2

of 432 with 104

degrees of freedom is highly significant. However, certain important

sources of the discrepancy between model and data have been speci~ied;

in particular, there is more response perseveration in the data than

the models predict. This discrepancy has been laid at the door of

"position bias," a tactic which admittedly is not entirely satisfac-

tory. The prospects of modifying the model to incorporate a bias

state are not very encouraging. A more promising course of action

would be to alter the experimental situation in such a fashion that

the effect of bias factors would be reduced; in the absence of a

better understanding of the sources of bias, such changes may have

to be made by a trial and error Process.

The evaluation of any model of behavior proceeds a step at a

time. In the case of models applied to probability learning, the

initial test of a particular model is that it must be able to account

for the mean response probability. It was the fact.that the weak­

strong model imposed an upper bound less than the observed values of
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the subjects which lead to consideration of the k-state generalization.

Given a model which can account for response probability, next its

ability to account for the sequential characteristics of the data must

be determined. As response probability is conditionalized on longer

and longer sequences, the model is put to more rigorous tests. The

limit on such testing depends in part on the data, since the occurrence

of observations following some sequences becomes very rare for n not

to equal to .50, and also on the willingness of the theorist to derive

the increasingly complex expressions for these sequences. The impor­

tant point is that a model may give a very good account of a set of

~taonone level 0t analysis, and yet prove quite inadequate when the

data are analyzed in more detail.

In fact, one is almost guaranteed that, given a model of behavior

which is quantitatively precise, some aspects of the data will be

found to differ significantly from predictions of the model. An

examination of the natu.re of these discrepancies often suggests ways

in which the assumptions of the model need to be changed. Thus, as

illustrated in this paper, a mathematical model not only allows a

precise test of a set of axioms, but also may lead to important modifi­

cations in assumpcions about the learning process.
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Appendix A: Sequential Statistics for k-state weak-strong model·

For simple weak-strong model (k = 2):

119

= 0
(1- n)3
(A+ B)

2
_ n(l-n) q>

w2 - A+ B

A =

For constant parameter case (Oi = 0, ~i = ~, k> 3):

S =A-s-w1 1 1

k( )k - 1 k - 1_ n 1- n p
wl - (A + B)

(k- 1)(1 )k k- 1_ n - n p
w2 - (A + B)

k-2(1 )k+lk-2n - n q>
s2 = (A+ B)



For variable parameter case

sl = (A+ B)

k( )k-l 2k- l _ln I-n cp

k-l
k-l( )k 2 -1n I-n _ cp
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2k-l 2
k

-
l 'Lk-

l
~l-n Ii ._2k- i - l

A=n cp -cp
n

i=O

B=
2k-l 2k- l k)l: ( n Ii _2k- i - l

(l-n) cp - cpI-n
i=O

First-order sequential dependencies:

P(AI IEIA2 ) = ~B [w28 + (N - l)AB]

P(AIIE2Al) = N~[Sl + sl + Wl(l - 8) + (N - 1)A
2

]

(N - l)A
N



Second~order sequential dependencies:

1+ 3(N - l)A+ (N - l)(N - 2)i
P(AIIE1\EIA1 ) '" ---------~­

N[l+ (N - l)A]

2
W

2
g + (N ~1)A[2""2 +B] +(N - l)(N - 2)A B

P(Al!ElAlElA2) =
N[""2+ (N -l)AB]

A-w
1

g + eN -l)A[3(Sl + sl)+ w
l

(3 - 2g)] + (N-l)(N _2)A3

P(A1IEIAIE2Al) = 2
N[A ~ w

1
g+ (N - l)A ]

1+ (N-2)A

P(AIIEIA1E2A2) =
N

P(AIIEIA2E1Al)

B+w
2

G+ (N -2)AB
=

NB

(1 - G)Gw2 + 5Gs
2

+ (N -1)[2BGw2 + AfW2 (1 - G) + s2 + S2~] + (N - l)(N - 2)AB
2

N[w
2

(1- G)+ s2+ S2+ (N_l)B
2

]

G
2

Wl + (N-l)[AG(W
l

+ w2 ) +BtSl +sl +Wl(l- G)}]+ (N- 1)(N- 2)A
2

B

N[wlG + (N - l)AB]

(1 - ~)""2 + (N -1)[B""2 +AB] + (N - l)(N _ 2)AB2

N[B+ (N - 1)B
2

]



8
1

+ 8
1

+W
1
[fl +(1- fl)(l-g)]+ (N -1)A[3(8

1
+ sl)+w

1
C3 - g)] + (1:1 -l)(N- 2)A3

NA[l + (N - l)A] .
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(1- g )gw2 + (N - l)[2Agw2 + B(A - w1g)] + (N - l)(N - 2 )A
2

B

N[w
2

G+ (N -l)AB]

8
1

+ 8
1

(1 - 5G) + w
l

(1 - G)2 + 3 (N - l)A[A - w
l

G] + (N - l)(N - 2 )A3

. 2
N[A -wlG+ (N -l)A ]

l+(N- 2)A
P(A1IE2A2E1Al) = ---­

N

(N -l)[Bgw2+ A(B -w
2

G)] + (N-l)(N _2)AB2

2
N[B ~ w

2
G+ (N - l)B ]

(N - l)[Agwl +B(A" wlG)] + (N - l)(N _2)A2B

N[W1G+ (N -l)AB]

(N - l)A + (N -l)(N- 2)AB
P(AlIE2A2E2A2) = --------­

N[l + (N -l)B]

where for N < 2, (N - 2) = 0



Reinforcement run statistics:

;3[Si + si + Wi [1_S(1_S)2] + wj [(l-fl) {1_(1_S)2} + flOS] + Sj(1-fl2 )SO

+ (N-1) ~(Ai)Wj {1_(1_S)2) + sj08 + 2(P(Ai )"Wi S(l-S) + W/1-fl)S}]

+ (N-1
2

[3P(Ai ) + S(2Wj -Wi )] + (N-1)3p (Ai )}

~{Si + si + Wi [1_S(1_S)3j + WA(1-fl)t1-(1-e)3} + fl{0-0(1-e)2 + (1-0)oe1]

+ Sj[fl2020e + (1-fl2 ){O[l-(1-S)2] + (l-o)oe}] + Sj (2) (1-fl
3

)020e

+ (N-1)[P(Ai ) + Wj{1-(1_S)3} + Sj[0[1_(1_e)2] + (l-O)OS} + Sj (2)020e]

*23

where

+ euwo-Wo)] + (N-1)4p (Ao)}
J l l
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Appendix B

Assume, for purposes of explanation, that the t~eoretical expres-
/\

sions, P(AiIEjAk), are functions of two parameters, a and ~ ,

having a range between ° and 1. The binary search program proceeds

first by setting the first parameter, a, equal to .50, the midpoint

The first step is to determine thesuccessive binary iterations.

of its range. The program then finds, to a desired accuracy, the

value of ~ which yields the minimum X2 for a equal to .50, by

X
2

for ~ of .25, ·50 and 75· If the smallest is at .25, then the

minimum (for a ~ .50) must be between ° and .50, so the next three

values of ~ are chosen to be .125, 125, and .375. The minimum value

from this set of three determines a new set of three, and so on. The

number of iterations determines the accuracy of the estimate. After

the minimum value of ~ has been determined for a equal to .50,

then the minimum is determined for a equal to .25 and .75, and the

value of a yielding a minimum (for some ~) then determines a new

set of a values on which the iteration is performed. The process

takes considerable time for three parameters if more than two or

three place accuracy is desired. In this study 5 and Il are

accurate to .008, while N is accurate to .125"

The characteristics of the estimation procedure have not been

fully investigated. However, from a number of exploratory tests in

which a large number of iterations have been rQn to obtain a closer

approximation to a point-estimate minimum value, it appears that

even with a relatively low degree of accuracy, one can obtain a

value which differs from the point-estimate minimum by less than five



percent of the minimum, (2) the estimates of 5 and ~ may differ

by as much as ten or fifteen percent from the point-estimate minimum

values, while (3) cp and .N are generally quite close, e. g. wi thin

five percent of the point-estimate minimum.

The criterion statistic is equivalent to the descriptive statistic,

125

and has been so denoted. I£ the cell frequencies were independent,

then subtracting a degree of freedom for each parameter, the statistic

would be distributed as X2 with 1 or 13 degrees of freedom for the

£irst- and second-order dependencies respectively. However, the

transition frequencies are not independent. The unobservable states

of conditioning do, by assumption, describe a one-trial Markov process;

the state of conditioning on any trial n for a given element depends

only on the state of conditioning on the preceeding trial and the

matrix of transition probabilities, and does not depend on any other

events prior to the preceeding trial. This one-trial Markov property

does not apply to the observable response events. If represents

the response sequence prior to trial n-l, then N(Ail Eji\:) depends

on xl' where, in particUlar, x is partly composed of other
~ ~l

cell entries. On the other hand, considering response-reinforcement

sequences of arbitrary length, it turns out that most of the informa-

tion about a response on trial n is gained by knowing what happened

on a relatively small number of preceeding trials, and though, strictly

speaking, the response on any trial n is a function of the entire

preceeding sequence of events, the dependence on events more than a

few trials removed is very slight. Thus we will use the X2 dis-

tribution and the degrees of freedom remaining after parameter



estimation to obtain an index of the adequacy of the various models.

[See Suppes and Atkinson, 1960, for a discussion of this problem. The

convergence referred to above has been shown by Lamperti and Suppes

(1959) to characterize the linear model; Suppes and Atkinson (1960)

mention that for the simple Markov models considered in their book,

the parameter estimates based on the
I

n-order sequential statistics

rapidly converge to a limiting value. It has not been proved that

this convergence property characterizes the particular models analyzed

in this study.]

In selecting the smaller subgroups for analysis, there·were some

cases in which the predicted cell frequencies for the second-order

statistics are smaller (less than five) than is appropriate for the

use of the X
2

statistic. These frequencies, which are always A2

responses, are not presented in the tables, but must be obtained by

subtraction. In Table lIb, for example, the last line contains the

following this sequence,A 's
1

predicted number of

observed and predicted frequencies for the sequence A2E2A2E2Ai The

total observed entries for this sequence, N(' IE
2

A
2

E
2
A

2
) , is 10, and

the observed number of Al transitions, N(AIIE2A2E2A2) is 6. The

A
N(AIIE2A2E2A2) ,

from the weak-strong model in column W-S, is 7.3, and the predicted

number of A 's
2

must be 2.7, since these two entries must sum to the

observed total of 10. There are two low-frequency cells in the pre-

dictions for sUbgroups I-MP, II-MP and I-High, and eight low-frequency

cells in SUbgroup II-High, all during runs 47-66.

It was not convenient to modify the estimation procedure to

correct this problem, and the results which are presented in the



tables are the output from the computer. However, in every case in

which a set of second-order statistics contains cells with frequencies

less than five, all such cells were combined, and a separate X2

12:7

based on fewer degrees of freedom was computed. These values

cannot be considered to be minimum values in any sense, of course,

and only a few examples of the results of these computations will be

presented. For all the sets of data where low-frequency entries exist,

when these cells are combined, the new X2 values present a virtually

unchanged picture of the correspondence between the models and the

data. Any change is usually in the direction of a slightly better fit.

For example, in group I-High, Table l2b, for the constant parameter

predicted as having 3.7 and 2.9 A2 's , respectively, following them.

If these two sequences are combined and a new X2 based on 12 degrees

of freedom is computed, the .value is 15.717, compared to a previous

X2 of 18.682, 13 df. Subgroup II-High contains eight low-frequency

cells for the constant parameter 3-state model. When these are com­

bined, a X
2

of 4.106 based on 5 degrees of freedom is obtained,

compared with a X2 of 13.145, 13 degrees of freedom previously.




