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In Sections 1, 2 ‘and 3, the theoretical framework we have been devel- 
oping  for a probabilistic theory of machine learning of natural  language is 
outlined. In Section 4, some simple examples showing how mean learning 
curves can  be constructed from the  theory  are given. But we also show 
that  the explicit computation of the mean learning curve for an  arbitrary 
number of sentences is unfeasible. This result holds even  when the learning 
itself is quite rapid.  In Section 5 we briefly describe the kinds of compre- 
hension grammars generated by our theory from a given finite sample of 
sentences. 

l Introduction 

In order to have a framework to discuss complexity issues  in the  learning of 
natural  language, we must first describe, even if intuitively and  somewhat 
too briefly, our probabilistic theory of natural-language learning. More than 
most other  current approaches, we have taken a very explicit route that uses 
principles of association and generalization derived from classical psycho- 
logical principles, but as will be evident enough, the theory we develop is in 
no sense something that falls within the domain of classical behavior theory 
- if for no  other reason than  the extensive internal memory structure we 
introduce. 

A second point we want to emphasize is that our  theory  has been devel- 
oped to simultaneously learn English, German, and Chinese. For quickness 
of reference, what we have to say here will almost entirely be in terms of 
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Before formulating the learning principles we use, we nee 
mally certain  assumptions about  the cognitive and  perceptual capacities of 
the class of robots we work with. 

Internal  I;anguage. We assume the robot has a fully developed internal 
language which it does not  learn. It is technically important,  but not con- 
ceptually  fundamental that in the present case this language is LISP. (FOP 
more details, see Section 3.) What must be emphasized is that when we 
speak here of the internal  language we refer only to  the language of the 
internal  representation, which is itself a language of a higher level of ab- 
straction, relative to  the concrete movements and  perceptions of the robot. 
There  are  severd  other  internal language modules that were either devel- 
oped by us or that come in the software package with Robotworld. It has 
been important  to us that most of the machine learning of a given natural 
language can  take glace through  simulation of the robot’s behavior just at 
the level of the language of the internal  representation. 

Objects,  Relations an¿ Properties. We furthermore assume the robot 
begins its  natural language learning  with  all the basic cognitive and per- 
ceptual  concepts it will have. This means that our first language learning 
experiments  are  pure  language learning. For example, we have assumed 
that  the  spatial relations  frequently referred to in all the languages we COR- 
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sider in  detail are  already known to  the  robot.  This is of course contrary  to 
human  language learning. There is  good evidence, for example, that most 
children do not  understand the relations of left and  right, even at the age 
of thirty-six  months when their command of language is already extremely 
good. 

Actions. What was just said  about  objects  and relations applies also 
to actions.  There are in the internal  language symbols for a fixed set of 
possible actions. The problem is only to learn  their  particular linguistic 
representation in a given language. What  has been said about  objects, 
relations,  properties  and actions constitutes a permanent part of memory 
of the  robot.  This memory does not change and is therefore not involved 
in the learning  theory we formulate. (It is obvious that in a more general 
theory we will want to include learning of new concepts, etc.) 

1.2 INTUITIVE DESCRIPTION OF T H E  PROCESS OF 
LEARNING 

What we want to describe now is the process of learning in terms of the 
various events that happen on a given trial.  First,  the robot begins a trial 
in a given state of memory. There  are  three  parts of this memory that 
are changed due to learning. The first is the association relation between 
words of a given language and  internal symbols that represent denotations 
of members of categories in the internal  representation language. For exam- 
ple, the action of putting will be represented internally, let  us say, by the 
symbol $ p  and will have three different linguistic representations in English, 
German and Chinese. The problem will be to learn in each language what 
word is properly associated with  the  internal representation $p.  The same 
process of association must be learned for objects, properties and  spatial 
relations. But knowing such associations is not enough, contrary to some 
naive theories of associationism. 

It is also  important to have grammatical forms. We  will  not try to lay out 
everything  about  grammatical forms that we have in our fully stated theory, 
but it will be useful to give some examples. Consider the verbal command 
Get  the screw!This  would be an instance of the grammatical form A the O!, 
where A is the category of actions  and O is the category of objects. As might 
be expected we do  not  actually have just a single category of actions, but 
several subcategories, depending upon the number of arguments  required, 
etc. The central point here, however, is the  nature of a grammatical form. 
The  grammatical forms are derived only from  actual instances of verbal 
commands given to the  robot. Secondly, associated with each grammatical 
form are  the first associations of words with  their  internal  interpretations. 
So for example, if Get  the screw! had been the first occurrence on which 
the  grammatical  form  just  stated was generated,  then also stored  with that 
grammatical form would be the associations get  - $g, screw - %-we use 
$9 for the internal symbol corresponding correctly to get ,  and sometimes 
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we just use g for get, as in the trees shown later. Similar conventions apply 
to other denoting words. The  third part of memory that varies is the  short- 
term memory that holds a given verbal command for the period of the  trial 
on which it is effective. This memory content decays and is not available 
for  access after the trial on which a particular command is given. So at the 
beginning of the  trial  this  short  term buffer is empty, but is filled  by the 
second step in learning. A verbal command is given to  the robot and it is 
held in memory in the short-term buffer. 

The  third  step is for the learning program to look up the associations 
of the words  in the verbal command that has been given.  If associations 
exist for any of the words, the categories of the associations, which are  the 
categories of the internal  interpretation,  are also retrieved. The categories 
are substituted for the associated words and  an effort is then  made to 
generate recursively the resulting grammatical form. For example, if mis- 
takenly the word get had been associated to $8, the internal symbol for 
screw, and scfew had been associated with $g, the internal symbol for get, 
then the grammatical form that would have been generated and now found 
upon a second occurrence of the verbal command would be O fhe  A! Now 
if there were no such grammatical form generated, once the associations 
were formed such a grammatical form would be created by the process of 
generalization which  is  used to generate  grammatical forms. 

When a grammatical form is stored  in memory, also associated with 
this grammatical form in  memory is its  internal representation. This is an 
important part of the memory that changes with learning as well.  If the 
grammatical form is generated, the internal representation is then used 
to execute the verbal command that has been given.  If the command is 
executed correctly then  the robot is ready for a new learning trial. 

The  important case of learning is  when no grammatical form can be 
generated recursively from the grammatical forms in memory to match 
the form of the given verbal command. In  this case the robot is unable 
to make a response. The correct response must be coerced. On the basis 
of this coercion, a new internal  representation is formed. At this point 
the critical step comes of a probabilistic association between  words of the 
verbal utterance  and  the  internal  denoting symbols of the new internal 
representation. This probabilistic association is assumed to be on a uniform 
probability basis.  For example, if within the new internal representation 
there are two internal denoting symbols and there  are no words in the verbal 
command associated to either of these  internal symbols, and  there  are four 
words in  the verbal command, then any pair of the four will be as likely 
to be associated with  the  pair of internal symbols as any other pair. After 
this-association is made, a new grammatical  form is generated, and possibly 
because of the new associations at least one of the old grammatical forms is 
deleted, for one of the axioms states that a word or  internal denoting symbol 
can have exactly one association, so when a new association is formed 
for a word any old associations must  be deleted. (This  strong all-or-none 
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tion in the case of semantic categories or category variables X, Xrp Y', etc. 
We use the  same category symbols in both grammatical forms and their 
internal  representations. We now turn to  the  statement of the axioms of 
learning in  intuitive  form. We  will  give a more formal and explicit state- 
ment in a longer version. We have  delayed until Section 5 statement of the 
most technical  axioms, the one on term association and  the  one on term 
form substitution, which are used to generate recursive grammatical forms. 

2.1 AXIOMS OF LEARNING 
l. (Assoczation  by  contiguity). If verbal command s is contiguous with a 

coerced action that has  internal  representation u, then s is associated 
with Q, i.e., in symbols s B.  

2. (Probabilistic  association). If s u, s has a set ( u i }  of denoting words 
- not associated  with any internal  denotations of u, and u has a set 

{q} of internal  symbols  not associated with  any words of s, then an 
element of {ai 1 is uniformly sampled without replacement from {ui} I 

at the same  time an element of  {ai} is correspondingly sampled, and 
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the sampled pair are associated, i.e., ai  CY^. Sampling continues 
until  there is no remaining ai or ai. 

3. (Prior  associations).  When a word in a verbal command or an internal 
symbol is given a new association (Axiom 2), any prior associations 
of that word or symbol are deleted from memory. 

4. (Forgetting  associations of commands). An association s - u of a 
verbal command s is held  only temporarily in memory until  the action 
represented internally by o is executed or until  all word associations 
are  complete (Axiom 2). 

5. (Correction  procedure). If a verbal command s cannot be executed 
or is executed incorrectly with s - o, and if a correct response with 
internd representation u' is coerced, then s is associated with u' for 
application of Axiom 2. 

6. (Category  genenalization). If t - T and r E X then t E X .  

7. (Gmmmat ica l  f o n n  genemliraiion). If g ( t )  - y(r), t - T and t E X. 
then g ( X )  - 7 ( X ) .  

9. (Memory  trace for a  grammatical f o m ) .  The first time a grammatical 
generdization ( X )  (Axiom 7) is formed, the word associations on 
which the generdization is based are  stored  with  it. 

10. (Elimination of a  grammatical fo rm) .  If a memory-trace association 
a - CY for g is eliminated (Axiom 3), then g is eliminated from mem- 
ory. 

3 Internal Representation 

In this section we sketch the language of internal  representation we use. 
As already mentioned, for purposes of our robotic  application we use LISP 
as the  language of representation.  Internal  representations will therefore be 
LISP-expressions. A LISP-expression is any  string (El ... E,,) where El,  ...( L 
are either atoms or LISP-expressions. 

The fragments of natural language are  meant to instruct a robot to per- 
form elementary  actions in a simple environment. Due to the capabili- 
ties of the robot  the tasks are moving around in a 3D space and opening 
(and closing) the gripper. The environment is a collection of objects like 
screws, nuts, washers, plates, sleeves of a limited number of colors,  sizes. 
and shapes.  Commands that typically arise in this  context are: Open the 
gripper!  Move  forward! lkrn t o  the  left!  Put  a  nut  on  the  screw! GO t o  



to determine the object of 
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then  takes  this  set of all screws of the environment as input and returns  a 
unique screw from this  set.  This  particular screw together with the action 
$g is the  input of the operation fa l .  

According to  the semantic category of the object that it denotes, eac 
expression of our language of internal representation belongs to a certain 
category. In the above example, e.g., the expression screw belongs to  the 
category property, more specifically: object  property, and the expression get 
belongs to  the category action.  The list of categories is as follows: Property 
(P), Spatial Relation, (R), Action ( A ) ,  and  Object (O). 

Semantic categories can be further divided into subcategories. The cat- 
egory R of spatial relations is split  up  into subcategories R1 and R2 de- 
pending on whether its elements are binary or  ternary relations. Associated 
with the category R is the semantic operation form pmperty, abbreviated 
as fp, which takes a relation and object as input and  returns a property 
- examples  are to be found in Section 5. The category A of actions has 
six subcategories depending OB the valency of the action expression. So we 
have a subcategory for actions that do  not require any  complement  like 
stop, another  subcategory for actions that require an object like get,  a sub- 
category for actions that require a region as complement like go as in, e.g. 
Go near a plate! a subcategory for actions that require both  an object and 
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a region like put, as in e.g. Put a screw near a plafe!  a subcategory for 
actions that require a direction as their complement like turn, as in  e.g. 
Turn left!, a d  a subcategory for actions that require both  an object and 
a direction as in e.g. Move the screw forwad!  Unlike the subcategories of 
relatiom the subcategories of actions are  not  disjoint, i.e. an action like, 
e.g. turn, occurs in more than one category. 

4 Mean Learning Curves 

Mean learning curves represent the average of all possible individual learn- 
ing curves. Such mean curves have several important features. First, by 
abstracting  from the details of individual curves they give a sense of the 
rate of learning to be expected. In the case of machine learning this  can 
be important in evaluating  the  practicality of the theory proposed. If the 
expected number of trials  to reach a  satisfactory  learning criterion is 21000, 
for example,  then the theory is not of practical  interest. Second, mean 
learning curves typically exhibit a theoretical  robustness that is not char- 
acteristic of individual learning curves,  i.e.,  in probabilistic terms, individ- 
ual sample  paths. Many  minor theoretical details and, on occasion, major 
ones as well, can be modified without changing the theoretically predicted 
mean learning curve. A familiar example is the mean learning curve that 
is identical for one-parameter linear incremental models of simple learn- 
ing and one-parameter all-or-none Markov models of the same phenomena. 
The predicted  individual sample paths  are completely different  for the two 
kinds  of models, but  the mean learning curves are identical. 

4.1 SIMPLE EXAMPLES 
Because in simple cases we can theoretically compute the mean learning 
curve from  the axioms of Section 2, we will first consider some  very simple 
cases that give an insight into how things work. These cases are so simple 
that no  actual simulation is needed. In the analyses we shall consider, let 

m = number of distinct commands, 
d = number of distinct denoting words, 
k = average number of denoting words per command. 

In the case of parameter k, in the simple cases we consider k is not simply 
an average but a constant. 

Case 1. m = 3, d = 3, k = 1. An example of this case would be simply 
three commands: Fornard!, Left! and Right! Because we have three com- 
mands and three denoting words with one occurring  in each sentence, it is 
quite easy to derive the mean probability of a correct response on trial n. 
It is apparent at once under the condition that we present a block of the 
three commands  randomly sampling without replacement. Such a block is 



this way,  followed  by the two branches of possible associations, each branch 
having probability 4, in accordance with Axiom 2. But in this special case, 
no further branching after the first trial need occur for the responses  are 
always correct. So p1 = O and p,, = 1 for n 2 2. It will  clarify the way the 
grammatical forms work to explain this  result. For this purpose we examine 
only the right branch of the tree. On this  branch on trial 1 the associations 
are the incorrect onFs. 
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The  grammatical  form  generated  and  its associated  internal form  are  then: 

A' A - I (A ,  A') 

Note that  on  the left branch  this reversal of order of A and A' between the 
grammatical  form  and the associated internal form  does not  take place: 

A A' - I(A,  A') (left  branch) 

But in  this  restricted,  simpleminded  but  instructive,  example,  either  gram- 
matical  form works for its  branch. 

The next two cases are  perhaps  the simplest which have a nontrivial 
mean learning  curve, i.e., the curve is not  just a (OJ) step  function. 

Case 3. m = 2, d = 3, k = 2, but with a special sampling procedure. The 
special sampling  procedure  is that  rather  than randomizing separately each 
block  of two  commands,  the two  commands  are  simply  alternated  on  each 
trial.  An  example of this case would be: Get nut! and Gei scfezu!, which, 
following our earlier notation, we abbreviate as g n and g s respectively. The 
association  tree  in the first few trials  has  the  form shown in  Figure 2 (where 
the choice of which command to begin with clearly does not  matter). So, 
as is easily shown on trial n 

1 P,, (Correct  response) = 1 - - 2"-2 ' 

for n 2 2, and  thus p l  = O, p2 = O ,  p3 = f, p4 = z,  etc. 
In  this simple  case the curve has a degenerate  S-shape, the first  point of 

inflection being at the  end of trial 2. 
Case 4. m = 2, d = 3, k = 2, but  with our standard  sampling  assump- 

tion. The same  language  example as was used for Case 3 will  work here. 
The  only change from  Case 3 is  in the  sampling procedure. We now sample 
independently to begin each block of 2 trials. Thus every odd-numbered 
trial has  probability i of being  either of the two commands,  and  the even- 
numbered  trials must  be different from  the preceding trial, i.e., must  sample 
the  other  command  with  probability 1. The tree,  from which we can de- 
rive the mean  leärning  curve, for four  trials  is  shown  in  Figure 3. What 
is unusual  and  conceptually  important  about  this case is the decrease in 
the  mean  probability of a correct  response  on trial 4. It is a consequence of 
the  wrong  association  in trial 2 of g s not producing an incorrect  response 
on trial 3 when the command Get screw! is repeated,  but  leading  to  an 
incorrect  response on  trial 4 when the command Get nut! is given. This 
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