

(

(

94

DONE
Exit from a level of looping.
This takes no arguments. It does a THROW to a pending CATCH which is
just outside the innermost level of loop control. The effect is to
immediately abor~ the loop. No result is RETURNed, because this is a
nonlocal return, rather the result THROWn is the atom DONE.

IGNORE
This is a no-op except for printing out the message "Ok, I'll ignore
it." OK is returned.

The following verbs evaluate all or SOme of their arguments
recursively, but only after performing some nontrivial task. These are
analagous to special forms such as COND PROG DO PROGN et al in LISP.

LOOP
Repeat steps over and over again forevermore, except that a DONE
anywhere in this loop (except inside an inner loop) will cause this
loop to exit.
This takes an arbitraty number of arguments. not recursively
interpreted initially. Each is some expression to be recursively
evaluated in turn.
First a CATCH is set. Inside that CATCH the looping takes place. First
the firs·t argument is recursively interpreted, then the second, etc.
Then the arguments are repeated (recursively interpreted) again and
again etc. The only way out is for a THROW to occur, which is effected
by a DONE being executed somewhere inside one of the steps. If the
THROWn value is the atom DONE, OK is then returned, else an error occurs.

IF
Conditionally execute a command depending on whether a boolean
expression returns TRUE or FALSE.
This takes two arguments, the condition (boolean expression) and the
command to maybe execute.
The condition is recursively interpreted. If it returns TRUE the
command is executed, otherwise nothing happens. The command is usually
a SEQUENCE of individual commands, and the O-IF function is optimized
for this. If the steps were skipped, or if all steps in the sequence
execute successfully, OK is returned.

REMEMBER
Remember something for future reference.
This takes one argument, which is a form to recursively interpret.
The global G:FETCH:TAG is nulled out, then the form is recursively
interpreted. That global must be set by the recursive interpretation,
indicating what kind of result is being returned. The tag is augmented
by including properties that are implied by the given property or by
the argument itself, for example if it is a number then the NUMBER
property is included. Then the returned result and the augmented list
of tags (properties) is pushed on the stack. OK is returned.

(

(

(.

95

DO-UNTIL
Do a sequence of steps until some exit condition is satisfied.
This takes two arguments, neither recursively interpreted initially:

SEQ = a SEQUENCE of forms to recursively interpret, or a single form
(which is interpreted as a SEQUENCE of one form)

EXITC = a boolean test which will return TRUE when the loop should
be exited.

SEQ is passed through COERCE-TO-SEQUENCE-TAIL to force it to be a list
of steps instead of a single step, while EXITC is used as is. These
are passed to TRY-REPEAT-UNTIL-CS to create a trial loop and exit it
in trial mode.

SEQUENCE
Do a sequence of actions one after.another.
This takes an arbitrary number of arguments, which are recursively
interpreted in left-to-right order. Each should return OK, or else an
error is signalled. Finally, if the bottom of the list is reached
without any error, OK is returned.

This verb makes a quick check of its argument to make sure it is of
the correct form, then calls another function to perform coercion of
that argument before performing the main operation itself.

LOOK-AT
Look at Some place in the arithmetic-example array, that is relocate
your viewpoint there.
This takes one argument, not recursively intepreted, which specifies a
location somehow. Currently this argument must be of the form
(INTERSECT-CUES •••) whereby a list (set) of cues is given.
SPLIT-LOC-OBJ is called to separate these cues into location and
object cues. Location cues specify some direction directly, whereas
object cues specify a location implicitly by what kind of object is to
be found there. Currently there must be exactly one location cue. The
number of object cues may be any including zero.
For actual execution, first O-LOOK is called to perform the actual
motion according to the location cue, then the various object cues if
any are tested to verify the location is acceptable. If not
acceptable, this function bombs out with an error. OK is returned.

These call coercion routines immediately on the arguments, then
perform the main operation on the results.

LOOK-DIRDIS
Look in some direction by some number of array cells relative to before.
This takes two arguments, a direction and a distance. The direction is
passed thru COERCE-DIRECTION-TO-DEL-COLROW which returns a unit vector
in the correct direction. The distance is pass through
COERCE-DISTANCE-TO-NUMBER which returns an integer. The vector and the
number are multipled to get a new vector, which is the relative motion
vector. This is added to the current location to get the new location.
OK is returned if it succeeded.

· I

(

96

ACTION-AT-LOCATION
Perform some action at some location. then return to the original location.
This takes two arguments. the action and the location.
LOCSPEC-TO-COLROW is called to convert the location specification into
a two-element list. (COL ROW). The current location is saved. then the
location is changed to (COL ROW). then the action is recursively
interpreted. then the location is restored to the saved value. Whatever
was returned by the action is passed up as the returned result.

LOOK
Look somewhere. i.e•• change the attention point.
This takes one argument which is not recursively evaluated.
This argument is passed to LOCSPEC-TO-COLROW to convert it into a
two-element list (COL ROW). The robot then sets its attention on the
location at these coordinates. OK is returned.

These verbs refer to earlier steps in the program (by keywords in all
but one case). either a mark at the start of the referred-to steps or
immediately making a loop out of the referred-to steps and executing it.

REFER-BACK-TO
Establish a label (reference point) on some earlier occurrance.
This takes one argument (not recursively interpreted) which is of a
special form: (WHEN (ROBOT-DID *» i.e. referring back to some action
of the robot. The spot shown as * is a list of keywords that specify
some action. or a SEQUENCE of such keyword-lists. This subexpression
is coerced to be a list of one or more keyword-lists. then passed to
OMAT-oLDEST which calls OMAT then throws away all but the oldest
label. This (oldest) label is estabished as the default label. which is
typically referenced by the very next sentence in the program. OK is
returned.

CONTINUE-UNTIL
Repeat some steps already done, until some exit condition is satisfied.
This takes two arguments: the sequence of steps to be repeated, and
the exit condition. Neither is recursively evaluated.
Two cases are currently implemented for the sequence:

(ROBOT-DID *) -- Keywords refer to steps. Only the steps referred to
are included in the loop, although the operator may edit the list
of steps after the list of steps is created. -- Control is passed
to O-DO-UNTIL which passes control to TRY-REPEAT-UNTIL-CS.

(STEPS-BETWEEN * *) -- Two already-established labels are used, and
all steps from the first label to the second label are included in
the loop. Control is passed directly to TRY-REPEAT-UNTIL-CS.

See TRY-REPEAT-UNTIL-CS for details of trial-loop execution, and
returned result.

This verb performs a case by case analysis of its arguments to
decide what to do.

(:

97

SOMETHING-ACTED-UPON
The object of some class that somebody did something to earlier.
Takes three arguments: WHO = who was supposed to have performed the
act; currently only ROBOT is implemented, i.e., actions the robot
performed earlier. WHATACT = what kind of action was performed;
currently only R&~EMBER is implemented, i.e., the act was one of
"remembering" something. WHATOBJ = what kind of object was acted upon,
i.e,. what type of object the robot remembered; currently only
ANY-NUMBER is implemented, i.e., any number that the robot remembered earlier.
Arguments are directly examined by case, dispatching to a specific
routine to handle the particular case. If more than one item satiSfies
the query, the most recent is used. Some datum is returned.

(

(

(

98

Appendix 7. Algorithm for Permuting Two Columns

The following test run of the robot system was run on:
Thursday, September 29, 1983 14:34:11

The objective of the test was to see if we could specify in English an
algorithm for exchanging the rightmost and next-to-rightmost column in
a column-addition example layout. We used only the mechanisms
developed for column addition and column subtraction, such as looking
various places, remembering the thing looked at or the result of an
arithmetic calculation, writing out digits from memory, and program
control such as loops and conditionals. Comments were inserted in the
text to explain what is going on and to indicate where portions of the
transcript were omitted for brevity. Where input was corrected by
backspacing, causing ugly backslants between characters, we have
freely edited the transcript to show the input actually seen by the
program. Otherwise what you see below is exactly what happened during
the test except for places a comment says we omitted something. All
commentS below are enclosed in DOUBLE square brackets to distinguish
them from bracketed and parenthesized output from the program.

[[First we start up the USLISP core image with all the compiled robot
software already loaded. It loads a patch file, and asks us what we
want to do.]]

@Ql.SAV;19
FILE: (PATCH. LSP) Open •• <PATCH-•••••••••••••••

e ••••••••.•••••••••••••••••••••••••••••••• -EOF> Utah-EOFclosed. Run new interpre
**tor with table-lookup parse&transl?

*
[[Unfortunately the linelength defaults to 78 columns, which is optimal.

for demonstrations but produces output too wide for our printer. Here
we abort the program to tell LISP we want narrower output for our
Printronix printer, then we restart the top-level robot menu.]1

* (LINELENGTH-FOR-PRINTRONIX)

70

*(Q1)

[[Ok, back to running our robot program, now We say yes we want the
"new interpretor", and do not want any prearranged input typed on
our behalf, we want to do the whole thing manually.]]

Run new interpretor with table-lookup parse&transl?
*y
Pre-type first part of JCL?
*N

[[Now it asks us where we want the input of English to come from, and
we say from our terminal (called TTY). Then we tell it which
arithmetic example we want to use as test data for this run·]1

(

~

1,
'" (.
~

f
:;:

;:~

}
i.:.
1
j,,
~

r
i
~
>

·f
~
k

(.

99

Old or invalid English input mode = NOT-YET-SPECIFIED
Select from among: (TTY DEBUG-SCRIPT DSK-SCRIPT TRAINING-STEP) :*TTY

[Reading table of known parses .,. done] [Reading file of known translations
•••done] Addition?

*y

Reading LISPified example file ••• ok, 6 expressions in the table.
Which example do you want? (number) *6

Using example number 6.
+---+
1 271
I 51
1 331
I 481
1 91
1 31
1 941
1 621
1 61
1---1
+---+
Is that the the example you want?
*y
Want option of reparsing/retranslating?
*N

When program asks for English, type a sentence, case doesn't matter, you can u
se multiple lines of input, end with a period.

[[Ok, now we are in the main loop of the interactive robot. First it
asks· us to type in the English sentence.]]

English*Look at the top number •

[[Second, it tries to find the sentence in the corpus. This time it
succeeds, and it immediately gives us the parsed English
S-expression without having to actually run the preparser and
main-parser and postparser.]]

Parse found in table, nO need to actually run parser&postparser.
(IMPERATIVE VP!+Advs look (PrepPh at (NP!+Adjs number the top»)

[[Third, it tries to find the translation in the corpus. Again it
succeeds, and immediately gives us the operator language without
having to run the translator.]]

Translation found in table, no need to actually run translator.
(LOOK!-AT (INTERSECT!-CUES (OBJECT NUMBER) (LOCATION TOP»)

100

[[Fourth it executes the operator language recursively. Each level of
recursion is shown by an extra level of indentation. In addition,
when a sequence or conditional occurs the steps in the sequence and
the antecedent and consequent of the conditional are shown indented.
Also various utterances are made by the robot in the course of
executing various commands.]1

Execution of operator language now•••
(LOOK-AT (INTERSECT-CUES (OBJECT NUMBER) (LOCATION TOP»)
I see '7' at row 1 (from the top) and column 1 (from the right).

[[The way this particular construction is executed, it first looks at
location TOP, then it checks to make sure that object is a NUMBER.
The first part caused it to make the utterance 'I see "7" ••• '
above. The second part will cause it -to use a small part of the
translation grammar to convert the 'NUMBER' that it is supposed to
check for into some executable operator language. It mentions that
it is loading the various tables needed by the translator and
performing various setup operations, then it silently produces the
desired operator language, then shows that operator-language
expression and proceeds to recursively execute it below.]]

Reading comp
iled translation-specs file ••• done. Flushing old rule-properties if any •••don
e, setting up rule-properties ••• done.

(CHECK (NUMBERP DEFAULT-oBJECT»
(NUMBERP DEFAULT-oBJECT)

DEFAULT-oBJECT
<Result=7>

<Result=TRUE>
<Checked out OK> ok?? [Press <esc> now:*$ Press <esc> again:*$-ok.]*$

[[Running USLISP on our TENEX system the <esc> character appears as a
different character depending on whether it is read from the terminal
Or from a disk file, furthermore there is no easy way to put the
terminal version of the character in the source of the program so
that the program can recognize it when it is typed in. To get around
this problem, the program asks the user to type the character twice
at runtime. That is the stuff between brackets just above. -- At the
very end of each sentence being executed, the program asks "ok??"
and waits for an <esc> to be typed. That appears just above, with
the definition of the <esc> character breaking it into two parts.
Later, With the <esc> character once defined, the bracket stuff
will not appear, and the "ok??" and the typin of the <esc> (shown as $
above), will appear contiguous. -- Anyway, now we are done with one
sentence, and we move onto the next, again repeating the above four
steps: (1) input of English, (2) parse, (3) translation, (4)
execution of operator language.]1

English*Look one space to the left.

101

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE VP!+Advs look (Num!+Mea one space)

(PrepPu to (NP!+Adjs left tue»)

Translation found in table, no need to actually ·run translator.
(LOOK!-DIRDIS LEFTWARD (DISTANCE 1»

Execution of operator language now•••
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
I see '2' at row 1 (from tue top) and column 2 (from tue rigut).

English*Look one space to the left again.

ok?? *$

Ie~
J

[[Here is wuat happens when we type a sentence that is not in the
corpus. It first tries to find it in tue corpus, and fails. Tuen it
loads a list of legal words, created earlier from the parser grammar
file, just to make sure we did not use a word it does not know about.
In this case all tue words are known, so it goes ahead and runs the
preparser followed by the main-parser on a TENEX lower fork
followed by the postparser. Tuis first time the lower fork job must
be initialized, resulting in most of tue junk you see just below.)]

[Parse not found, uave to run parser now.) [Loading legal-word list •
•• done) [Setting up SAIL parser••• <Y><ROBOT><ROBOT.GRA>
Rules with Undefined Semantics
<SS>*<SILENT>*done.) []*.*

[[Tue following junk is generated by the postparser. Most of it
consists of trace output regarding properties assigned to atoms for
fast reference. Tuese are done on the fly tue first time they are
needed, subsequent needs are shunted througu the properties wituout typeout.])

[Loading REJECT.PAR •••done) (IMP
ERATIVE -> PP-IMPERATIVE)(VPR+Adv -> VPX)(VPR+Loc -> VPX)(Num+Mea -> ASIS) (Pre
pPu -> ASIS) (NP+Adjs -> NPX)#[<O>l)

[No demerits!)

[[Finally it is done, and it announces the parse it came up with.))

Newly-computed parse below•••
(IMPERATIVE VP!+Advs look (Num!+Mea one space)

(PrepPu to (NP!+Adjs left tue» again) <Added that new parse to th
e in-core table>

[[After computing that parse, it added it to tue in-core copy of the
corpus, so that if we happen to need that same exact sentence later
in the same test run it won't have to recompute it. -- Next it tries
to find the parsed English in the translation corpus (sometimes two
different sentences will yield tue same parse, so even if tue
original English wasn't in the corpus the parsed English migut be).])

102

[Translation not found, must run translator now]

[[Well, this time we were not so lucky, so we must actually run the
translator.]]

Newly-computed translation below•••
(NO! -TRANSLATIONS) ,

[[Well, this time we were really unlucky, our translation grammar
is not capable of translating this sentence even though our parsing
grammar was able to parse the English. We will have to give up on this
particular sentence, but first the program wants to know if we want
a detailed trace of the translation so we can figure out why it
bombed out, and it wants to know if we want to just type in the
operator language manually to get the job done. We decline both options.]]

Want to get trace of failed translation?
*n
Manually type-in the operator-language?

*n

[[That is all there is with that sentence attempt, back to try another
English sentence of input.]]

English*Look one space to the left.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE VP!+Advs look (Num!+Mea one space)

(PrepPh to (NP !+Adjs left the»)

right, without
a third column
extra column of
Better to find
There was

the test run.]]

Translation found in table, no need to actually run translator.
(LOOK!-DIRDIS LEFTWARD (DISTANCE 1»

Execution of operator language now•••
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
I see' • at row 1 (from the top) and column 3 (from the right).

[[The reason we looked to the left then looked to the
actually doing anything, was to make sure there WAS
(empty) in the input matrix. Some examples have an
spaces to the left of the numbers, and some do not.
out now before we invest a lot of time in this test.
indeed an extra column available, so we proceed with

English*Look one space to the right.

ok?? *$

,
"

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE VP!+Advs look (Num!+Mea one space)

(PrepPh to (NP!+Adjs right the»)

Translation found in table, no need to actually run translator.
(LOOK!-DIRDIS RIGHTWARD (DISTANCE 1»

103

English*Look at the number.

[[As you See above, even the execution succeededl]]

[[This is another sentence not in the corpus, so we have to run the parser.]]

[[This is another sentence not in the corpus, so we have to run the
parse and translator.]]

ok?? *$

[[If you recall, the previous time.we typed a sentence that was not in
the corpus, the parser worked but the translator failed. This time
we are luckier, both the parser and the translator seem to have
succeeded .]]

English*If you see a space write out a zero.

[Parse not found, have to run parser now.] []*.*#[<O>1]
[No demerits l]

Newly-computed parse below•••
(IMPERATIVE VPl+Advs look (PrepPh at (NPl+Adjs number the») <Added that new p
arse to the in-core table> [Translation not found, must run translator now]
Newly-computed translation below•••
(LOOKl-AT DEFAULT!-NUMBER)
<Added that new transl to the in-core table>

Execution of operator language now•••
(LOOK-AT DEFAULT-NUMBER)
O-BOMB at O-'LOOK-AT bad tail
Value=(DEFAULT-NUMBER) [RES=BOMBED] (Hmmm, I must have done something wrong.)

Command failed, want to omit it from past steps?
*y

ok?? *$

Execution of operator language now•••
(IF (SPACEP DEFAULT-QBJECT) (WRITE-QUT 0»

(SPACEP DEFAULT-OBJECT)
DEFAULT-QBJECT
<Result=2>

<Result=FALSE> Skipping these steps ok?? *$

[Parse not found, have to run parser now.] []*.*(IF -> PP-IF) (DECLARE ->
PP-DECLARE)(Subj+Verb -> ASIS) (TV+NP -> ASIS) (TV-IDIOM -> ASIS)#[<0>1]

[No demerits l]
Newly-computed parse below•••
(IF (DECLARE Subjl+Verb you (TVl+NP see (NPl+Adjs space a»)

(IMPERATIVE TVl+NP (TVl-IDIOM write out) (NPl+Adjs Zero a») <Added that n
ew parse to the in-core table> [Translation not found, .must run translator no
w]
Newly-computed translation below•••
(IF (S.PACEP DEFAULTl-QBJECT) (WRITEl-QUT 0»
<Added that new transl to the in-core table>

Execution of operator language now•••
(LOOK-DIRDIS RIGHTWARD (DISTANCE 1»
I.see '2' at row 1 (from the top) and column 2 (from the right).

(

,.,,
(

;

1
I
~
~,
j
1
;
~.,
.~.

~

f
;,
~,
b,
J,
~.

1
~
'?;
v
}.

.-".
-~t:

~

"f
~-,
"1
j
~,
-~.

J
()..

~,

,.
~'

k'.J,
&'
r
ir.,
~.

2-
11
[;

'";;.
t

f,.
i
<
1.
i.'.

.c

104

[[As you see above, parse and translation succeeded, but execution
encoutered a bug in the robot system.· This bug will nOt be fixed at
this time because we want all these test runs to be fair, to use
ONLY the mechanisms we created for the column addition and column
subtraction algrithms, so We have "frozen" the software already and
will not be making any changed, even bug fixes. -- We must figure out
some other way to say the same thing we intended above, but avoiding
the bug somehow. We try below.]]

English*See this number.
[Parse not found, have to run parser now.] []*.*#[<O>l]
[No demerits!]

Newly-computed parse below•••
(IMPERATIVE TV!+NP see (NP!+Adjs number this» <Added that new parse to the in
-core table> [Translation not found, must run translator now]
Newly-computed translation below•••
(NO!-TRANSLATIONS)
Want to get trace of failed translation?
*y

UNope, that failed too, but this time it was the translator that
could not handle it, and it is something we think it ought to handle,
so we say YES we want a trace of the translation printed out here so
later when we are once again modifying the software (in this case
just the translation table) We can look back at this and make the
required fix. So, here is an indented translation trace to ponder.]]

TOP = (IMPERATIVE TV-tNP see (NP-h\djs number this»
Newly-computed translation below•••
(NO!-TRANSLATIONS)

[[Well, that was simple, it bombed out at the very top-level production!]]

Manually type-in the operator-language?
*n

English*Look here again'

[[Aha, this phrasing happens to be in the corpus.]]

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE VP!+Advs look (Dadv!= here) again)

Translation found in table, no need to actually run translator.
(LOOK DEFAULT!-LOCATION)

Execution of operator language now•••
(LOOK DEFAULT-LOCATION)
I see '2' at row 1 (from the top) and column 2 (from the right).

English*Remember this number.

ok?? *$

(

~
j
.j,,

105

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE TV!+NP remember (NP!+Adjs number this»

Translation found in table, no need to actually run translator.
(REMEMBER DEFAULT!-NUMBER)

Execution of operator language now•••
(REMEMBER DEFAULT-NUMBER)

DEFAULT-NUMBER
<Result=2>

I'll remember '2'. ok?? *$

English*Move one space to the left.
[Parse not found, have to run parser now.] []*.*H[<O>1]
[No demerits!]

Newly-computed parse below•••
(IMPERATIVE VP !+Advs move (Num!iMea one space)

(PrepPh to (NP!+Adjs left the») <Added that new parse to the in-c
ore table> [Translation not found, must run translator now]
Newly-computed translation below•••
(NO!-TRANSLATIONS)
Want to get trace of failed translation?
*n
Manually type-in the operator-language?

*n

English*Look one space to the left.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE VP!+Advs look (Num!iMea one space)

(PrepPh to (NP!+Adjs left the»)

Translation found in table, no need to actually run translator.
(LOOK!-DIRDIS LEFTWARD (DISTANCE 1»

j (, "
~ ,

<

Execution of operator language now•••
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
I see' , at row 1 (from the top) and column 3 (from the right).

English*Write out the number you remembered.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE TV!+NP (TV!-IDIOM write out)

(N!+rclause (NP!+Adjs number the)
(that you remembered THAT!&SLOT»)

Translation found in table, no need to actually run translator.
(WRITE!-OUT (SOMETHING!-ACTED!-UPON ROBOT REMEMBER ANY!-NUMBER»

Execution of operator language now•••
(WRITE-QUT (SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER»

(SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER)
<Result=2>

ok?? *$

;,
.,.
~
y,

;(

,',,

.-;,,

.~

(

;'

106

Will put a '2' at this spot:
t---+
12271
I 51
I 331
1 481
I 91
I 31
I 941
I 621
1 61
1---1
t---+

ok?? *$

English*Look one space to the right.

Parse found in table, no need to actually run parser&postparser•
(IMPERATIVE VP I+Advs look (Num!+Mea One space)

(PrepPh to (NP I+Adjs right the»)

Translation found in table, no need to actually run translator.
(LOOK!-DIRDIS RIGHTWARD (DISTANCE 1»

Execution of operator language nOW•••
(LOOK-DIRDIS RIGHTWARD (DISTANCE 1»
I see '2' at row 1 (from the top) and column 2 (from the right).

English*Look one space to the right.

Parse found in table, no need to actually·run parser&postparser.
(IMPERATIVE VP!+Advs look (Num!+Mea one space)

(PrepPh to (NP!+Adjs right the»)

Translation found in table, no need to actually run translator.
(LOOK!-DIRDIS RIGHTWARD (DISTANCE 1»

Execution of operator language now•••
(LOOK-DIRDIS RIGHTWARD (DISTANCE 1»
I see '7' at row 1 (from the top) and column 1 (from the right).

English*Remember this number.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE TVl+NP remember (NP!+Adjs number this»

Translation found in table, no need to actually run translator.
(REMEMBER DEFAULT I-NUMBER)

Execution of operator language noW•••
(REMEMBER DEFAULT-NUMBER)

DEFAULT-NUMBER
<Result=7>

I'll remember '7'. ok?? *$

ok?? *$

ok?? *$

(

(

lO7

English*Look one space to the left.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE VP!+Advs look (Num!+Mea one space)

(PrepPh to (NP!+Adjs left the»)

Translation found in table, no need to actually run translator.
(LOOK!-DIRDIS LEFTWARD (DISTANCE 1»

Execution of operator language now•••
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
I see '2' at row 1 (from the top) and column 2 (from the right).

English*Write ou~ the number you remembered.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE TV!+NP (TV!-IDIOM write out)

(N!+rclause (NP!+Adjs number the)
(that you remembered THAT!&SLOT»)

Translation found in table, nO need to actually run translator.
(WRITE!-QUT (SOMETHING!-ACTED!-UPON ROBOT REMEMBER ANY!-NUMBER»

Execution of operator language noW•••
(WRITE-QUT (SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER»

(SOMETHING-ACTED-UPON.ROBOT REMEMBER ANY-NUMBER)
<Result=7>

Will erase '2'. Will put a '7' at this spot:
+---+
12771
I 51
1 331
1 481
1 91
1 31
I 941
I 621
1 61
1---1
+---+

ok?? *$

English*Look one space to the left.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE VP!+Advs look (Num!+Mea one space)

(PrepPh to (NP!+Adjs left the»)

Translation found in table, no need to actually run translator.
(LOOK!-DIRDIS LEFTWARD (DISTANCE 1»

ok?? *$

;(

108

Execution of operator language now•••
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
I see '2' at row 1 (from the top) and column 3 (from the right).

English*Remember this number.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE TV!+NP remember (NP!+Adjs number this»

Translation found in table, no need to actually run translator.
(REMEMBER DEFAULT!-NUMBER)

Execution of operator language now•••
(REMEMBER DEFAULT-NUMBER)

DEFAULT-NUMBER
<Result=2>

I'll remember '2'. ok?? *$

ok?? *$

1
1
.~

j

<

" ..

English*Write oUt a space.
[Parse not found, have to run parser now.] []*.*U[<O>l]
[No demerits!]

Newly-computed parse below•••
(IMPERATIVE TV!+NP (TV!-IDIOM write out) (NP!+Adjs space a» <Added that new p
arse to the in-core table> [Translation not found, must run translator now]
Newly-computed translation below•••
(WRITE!-QUT SPACE)
<Added that new transl to the in-core table>

Execution of operator language now•••
(WRITE-QUT SPACE)

SPACE
<Result= >

Will erase '2'. Will put a ' • at this spot:
+---+
I 771
1 51
1 331
I 481
I 91
I 31
I 941
I 621
1 61
1---1
+---+

ok?? *$

English*Look two spaces to the right.
[Parse not found, have to run parser now.] []*.*U[<O>l]
[No demerits!]

NeWly-computed parse below•••
(IMPERATIVE VP!+Advs look (Num!+Mea two spaces)

(PrepPh to (NP!+Adjs right the») <Added that new parse to the in­
core table> ,[Translation not found, must run translator now]
NeWly-computed translation below•••
(NOI-TRANSLATIONS)

(

109

[[Here is another sentene we think the robot ought to be able to
handle, so again we ask for a trace of translation to see why it failed.]1

Want to get trace of failed translation?
*y

TOP ~ (IMPERATIVE VP+Advs look (NumfMea two spaces) (PrepPh to (NP+Adjs right
the»)

Syntax = (IMPERATIVE VP+Advs look [DISTANCE] (PrepPh to (NP+Adjs [SIMPLEDIR]
the»)
Bindings ~ «DISTANCE Num+Mea two spaces) (SIMPLEDIR • right»

DISTANCE ~ (Num+Mea two spaces)
Newly-computed translation below•••
(NO!-TRANSLATIONS)
Manually type-in the operator-language?

*n

English*Look one space to the right.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE VP !+Advs look (Num!+Mea one space)

(PrepPh to (NP!+Adjs right the»)

Translation found in table, no need to actually run translator.
(LOOK!-DIRDIS RIGHTWARD (DISTANCE 1»

(
Execution of operator language now•••
(LOOK-DIRDIS RIGHTWARD (DISTANCE 1»
I see' 7' at row 1 (from the top) and column 2 (from the right).

English*Look one space to the right.

Parse found in table, no need to actually run parser&postparser.
(IMPERATIVE VP!+Advs look (Num!+Mea one space)

(PrepPh to (NP!+Adjs right the»)

Translation found in table, no need to actually run translator.
(LOOK!-DIRDIS RIGHTWARD (DISTANCE 1»

Execution of operator language now•••
(LOOK-DIRDIS RIGHTWARD (DISTANCE 1»
I see '7' at row 1 (from the top) and column 1 (from the right).

ok?? *$

ok?? *$

! .'

English*Write out the number that you remembered.
[Parse not found, have to run parser now.] []*.*(N+rclause -> ASIS) (that

-> MAP1) II [<0>1]
[No demerits!]

Newly-computed parse below•••
(IMPERATIVE TV!+NP (TV!-IDIOM write out)

(N !+rclause (NP! +Adj s number the) .
(that you remembered THAT!&SLOT») <Added that new par

se to the in-core table>

(

(

110

Translation found in table, no need to actually run translator.
(WRITE!-OUT (SOMETHING!-ACTED!-UPON ROBOT REMEMBER ANY!-NUMBER»

Execution of operator language noW•••
(WRITE-DUT (SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER»

(SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER)
<Result=2>

Will erase '7'. Will put a '2' at this spot:
t---+
I 721
1 51
I 331
I 481
I 91
I 31
1 941
I 621
1 61
1---1
t---+
ok?? *$

[[We are almost done with one iteration through the swapping loop.
We have exchanged the rightmost and next-to-right digit in the top
row, using the third-from~rightmostcolumn as a scratch pad. Now we
have to move down to the next row, make sure we have not hit the row
of hyphens (bars) yet, and repeat the above swapping operation.J]

English*Look one space down.
[Parse not found" have to run parser now.] []*.*(Adv+Adv -> PP-Ad~v)#D

[<0>2]
[No demerits!]

Newly-computed parse below•••
(MULTIPLE!-PARSES

(IMPERATIVE VP!+Advs look (Adv!+Adv (Num!+Mea one space) down»
(IMPERATIVE VP!+Advs look (Num!+Mea one space) down» <Added that new parse t

o the in-core table>

[[When there is more than one parse after the postparser, the new
interpretor loop tries to translate each part, and if exactly one
part successfully translates it assumes the parse it came from is
the correct parse and it is the correct translation. If there are
zero or more-than-one successful translations, it gives up. Let's
see what happens here.]]

2 parses to be tried•••

Trial parse = (IMPERATIVE VP+Advs look (Adv+Adv (Num+Mea one space) down» [T
ranslation not found, must run translator now]
Newly-computed translation below•••
(LOOK!-DIRDIS DOWNWARD (DISTANCE 1»

(

III

Trial parse c {IMPERATIVE VP+Advs look (Num+Mea one space) down) [Translation
not found, must run translator now]

Newly-computed translation below•••
(NO!-TRANSLATIONS)

1 good translation~s). <Added that new transl to the in-core table>

[[Well, we lucked out, exactly one successful translation. Proceeding
~ith the rest of handling this sentence.]1

Execution of operator language now•••
{LOOK-DIRDIS DOWNWARD (DISTANCE 1»
I see '5' at row 2 (from the top) and column 1 (from. the right).

[[It worked! Hurray! I I

English*Look one space to the left.

ok?? *$

,,

[[Back when we moved into the third column just to make sure it
existed, afterward we moved back to the second column but not back
to the first (rightmost) column before starting the part we want
included in the main loop. Thus we must now move into the second
column so we will be ready to start repeating those earlier steps.11

Parse found in table, no need to actually run parser&postparser.
{IMPERATIVE VP !+Advs look (Num!+Mea one space)

{PrepPh to (NP!+Adjs left the»)

Translation found in table, no need to actually run translator.
{LOOK!-DIRDIS LEFTWARD (DISTANCE 1»

[[Done. Now we are ready to attach a temporary label to the first
sentence of the loop we want to form out of sentences already
executed once above, then actually form a loop of everything from
that step to the most recent step.11

Execution of operator language now•••
{LOOK-DIRDIS LEFTWARD (DISTANCE 1»
I See' , at row 2 (from the top) and column 2 (from the right). ok?? *$

English*Refer back to when you wrote a zero if there Was a space.
[Parse not found, have to run parser now.] [1*.*[01
[No demerits!]

NeWly-computed parse below•••
{NO I-PARSES) Manually type-in the operator-language?
*n

English*Refer back to when you wrote a zero.
[Parse not found, have to run parser now.] []*.*(NP=Rprol+S -> ASIS){TVed

+NP -> PP-TVed+NP) II [<0> II
[No demerits! I

(

\

112

Newly-computed parse below•••
(IMPERATIVE VPI+Advs refer back

(PrepPh to
(NPI=Rpr011+S when

(DECLARE Subjl+Verb you
(TVedl+NP wrote (NpI+Adjs zero a»)

. ») <Added that neW parse to the in-core table> [Transla
tion not found, must run translator now]
Newly-computed translation below•••
(REFERI-BACKI-TO (WHEN (ROBOTI-DID (WRITEI-OUT ZERO»»
<Added that new transl to the in-core table>

Execution of operator language now•••
(REFER-BACK-TO (WHEN (ROBOT-DID (WRITE-Qut ZERO»» Using a threshold:of 0.600
00000 ••• [No NEWMAT property for 'DEFAULT-LOCATION']
Found match = (5)
NCDR-ST=4 NCDR-EN=17
«IF (SPACEI' DEFAULTI-QBJECT) (WRITEI-QUT 0») Is that ok?
*y

RES2=(-18) [OMAT-DLDEST, RES1=(-18) RES2~18]

Absolute reference index = 5 ok?? *$

[[Ok, here is where We form that loop and execute it in trial mode to
figure out whether it is supposed to be top-tested or bottom-tested or
somewhere-in-middle~tested.]]

English*Continue doing everything from that step up thru the most
English*recent step, until you see a bar.

[Parse not found, have to run parser now.] []*.*(CONTINUE-UNTIL->
pp~ONTINUE-UNTIL)(Adv+Adj -> ASIS)U(DO-UNTIL -> pp-DO-UNTIL)(TV+S -> pp-TV+S

)(1 CONTINUE-IN-DOUNTIL) <Writing rejects on file TEMp.REJ> U(SEQUENCE -> PP-S
EQUENCE)(2 IMP-SEQ MlXED-MODE)/I(1 CONTINUE-SAME ATOM-FIXUp)lI[<Rpl'O>1]
Close reject output file now?
*y

<Reject file TEMp.REJ closed>
G:NOMODE:ATOMS = (CONTINUE-SAME)
Demerit total counts (unweighted) = (ATOM-FIXUp 1) (CONTINUE-SAME 1) (MIXED-MO
DE 1) (IMP-SEQ 1) (CONTINUE-IN-DOUNTIL 1)
Newly-computed parse below•••
(IMPERATIVE CONTINUE I-UNTIL

(IMPERATIVE VPI+Advs (TVI+Np doing everything)
(PrepPh from (Npl+Adjs step that»
(PrepPh UPTHRU

(Npl+Adjs step the (Advl+Adj most recent»»
(Subjl+Verb you (TVI+Np see (NpI+Adjs bar a»» <Added that new pa

rse to the in-core table> [Translation not found, must run translator now] Li
**mping at 4472

USED 0:03:06.3 IN 0:31:56, LOAD AV 5.41 4.34 2.92

[[The robot seemed to be taking a long time, so we pressed ctrl-T to
see the system load, and found indeed the load had risen to more
than 5, which on this system makes things run very slowly.]]

(

(

113

Newly-computed translation below•••
(CONTINUE!-UNTIL

(STEPS I-BETWEEN MARKED!-STEP LATEST I-STEP) (BARP DEFAULT I-OBJECT»
<Added that new transl to the in-core table>

Execution of operator language now•••
(CONTINUE-UNTIL (STEPS-BETWEEN MARKED-STEP LATEST-STEP) (BARP DEFAULT-QBJECT»
Watching for (BARP DEFAULT-QBJECT) while executing steps:

(IF (SPACEP DEFAULT-QBJECT) (WRITE-QUT 0»
(LOOK DEFAULT-LOCATION)
(REMEMBER DEFAULT-NUMBER)
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
(WRITE-QUT (SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER»
(LOOK-DIRDIS RIGHTWARD (DISTANCE 1»
(LOOK-DIRDIS RIGHTWARD (DISTANCE 1»
(REMEMBER DEFAULT-NUMBER)
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
(WRITE-QUT (SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER»
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
(REMEMBER DEFAULT-NUMBER)
(WRITE-QUT SPACE)
(LOOK-DIRDIS RIGHTWARD (DISTANCE 1»
(LOOK-DIRDIS RIGHTWARD (DISTANCE 1»
(WRITE-QUT (SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER»
(LOOK-DIRDIS DOWNWARD (DISTANCE 1»
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»

[[The trial loop is now formed out of the above steps. Now the robot
begins trial-executing it, checking for the exit condition at the
very start as well as after each step in the loop.]]

INDEX=O -EXIT-CHECK- (BARP DEFAULT-QBJECT)
(BARP DEFAULT-QBJECT)

DEFAULT-QBJECT
<Result= >

<Result=FALSE> (exit check not yet satisfied)
-- (IF (SPACEP DEFAULT-QBJECT) (WRITE-QUT 0»

(IF (SPACEP DEFAULT-QBJECT) (WRITE-QUT 0»
(SPACEP DEFAULT-QBJECT)

DEFAULT-OBJECT
<Result= >

<Result=TRUE> Rere we go
(WRITE-QUT 0)

o
<Result=O>

Will put a '0' at this spot:

1(
~

.
-,

114

+---+
I 72/
I 051
I 331
1 481
I 91
1 31
I 941
I 621

61
1--1
+--+

INDEXm1 -EXIT-CHECK- (BARP DEFAULT-oBJECT)
(BARP DEFAULT-oBJECT)

DEFAULT-oBJECT
<Result= >

<Result=FALSE> (exit check not yet satisfied)
-- (LOOK DEFAULT-LOCATION)

(LOOK DEFAULT-LOCATION)
I see '0' at row 2 (from the top) and column 2 (from the right).
INDEX=2 -EXIT-CHECK- CBARP DEFAULT-oBJECT)
(BARP DEFAULT-OBJECT)

DEFAULT-oBJECT
<Result=O>

<ResultmFALSE> (exit check not yet satisfied)
-- (REMEMBER DEFAULT-NUMBER)

(REMEMBER DEFAULT-NUMBER)
DEFAULT-NUMBER
<Result=O>

I'll remember '0'.
INDEX=3 -EXIT-CHECK- (BARP DEFAULT-GBJECT)
(BARP DEFAULT-oBJECT)

DEFAULT-oBJECT
<Result=O>

<Result=FALSE> (exit check not yet satisfied)
-- (LOOK-DIRDIS -LEFTWARD (DISTANCE 1»

(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
I see' , at row 2 (from the top) and column 3 (from the right).
INDEXm4 -EXIT-CHECK- (BARP DEFAULT-GBJECT)
(BARP DEFAULT-oBJECT)

DEFAULT-OBJECT
<Result= >

<Result=FALSE> (exit check not yet satisfied)
-- (mUTE-oUT (SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER»

(WRITE-oUT (SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER»
(SOMETHING-ACTED-UPON ROBOT REMEMBER ANY-NUMBER)
<Result=O>

Will put a '0' at this spot:

115

+---+

(I 721
10051
I 331 ii
1 481 i

j,
1 91 ,
I 31
I 941 i-:

!
I 621

,

I 61
1---1
+---+

[[From here to end of example program performs as expected, about 29
pages of transcript omitted here for brevity.]]

Will erase '6'. Will put a '0' at this spot:
+---+
I 721
I 501
1 331
I 841
I 901
I 301
1 491
1 261
I 60 I
1---1
+---+

INDEX~16 -EXIT-CHECK- (BARP DEFAULT-QBJECT)
(BARP DEFAULT-QBJECT)

DEFAULT-QBJECT
<Result=6>

<Result=FALSE> (exit check not yet satisfied)
-- (LOOK-DIRDIS DOWNWARD (DISTANCE 1»
(LOO~DIRDIS DOWNWARD (DISTANCE 1»
I see '-' at row 10 (from the top) and column 1 (from the right).
INDEX=17 -EXIT-CHECK- (BARP DEFAULT-QBJECT)
(BARP DEFAULT-QBJECT)

DEFAULT-QBJECT
<Result=->

<Result=TRUE>
Trace: DONES=(O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18) THIS=17 Is this

the right time and place to stop repeating?
*n

(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
(LOOK-DIRDIS LEFTWARD (DISTANCE 1»
I see '-' at row 10 (from the top) and column 2 (from the right).
INDEX=18 -EXIT-GHECK- (BARP DEFAULT-QBJECT)

(.

(

116

(BARP DEFAULT-DBJECT)
DEFAULT-OBJECT
<ResultQ->

<Result=TRUE>
Trace: DONESa(O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18) THIS=18 [WARNING,
BOTTOM TESTED LOOP, BAD] Is this the right time and place to stop repeating?
*n .

[Bottom, looping] [Loop completed, repeating again]
INDEXQO -EXIT-CHECK- (BARP DEFAULT-DBJECT)
(BARP DEFAULT-DBJECT)

DEFAULT-DBJECT
<Result=->

<Result=TRUE>
Trace: DONES=(O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16) THIS=O [TOP-TESTED LO
OP] Is this the right time and place to stop repeating?
*y

Step=(LOOP (IF (BARP DEFAULT-DBJECT) (DONE» (IF (SPACEP DEFAULT-DBJE••) [Lo
op exited normally]
That loop has been optimized by pulling the preceding 18 steps into it and rot
ating it accordingly. ok?? *$

[[That is all, so now we just press a carriage return instead of typing
in another English sentence.]]

English*
Atomic sentence, end of run now?
*y

See the final view of the example?
*y

i---+
I 721
I 501
1 331
I 841
I 901
1 301
I 491·
I 261
1 601
1---1
i---+

i(

117

Appendix B. Postparser Exception List

This is the list of parses which can not be demerited for any good
reason currently, yet are nevertheless wrong and need to be demerited
by fiat.

(
(IMPERATIVE VPl+Advs look (PrepPh at (NPl+Adjs spot the top»

(PrepPh in
(NPl+Adjs column the

(PrepPh to (NPl+Adjs left the»»)
(IMPERATIVE VP l+Advs look

(PrepPh at
(NPl+Adjs top the

(PrepPh of ,-
(NPl+Adjs
column
the
(Split l-Adj I+Loc
next
(PrepPh
to (NP!+Adjs left the»»)

»)
(IMPERATIVE VP I+Advs look

(PrepPh at
(NPl+Adjs top the

(PrepPh of (NPl+Adjs column the next»)
)

(PrepPh to (NPl+Adjs left the»)
(IMPERATIVE VP!+Advs

(TVl+NP (TV!-IDIOM write out) (NP!+Adjs digit the tens»
(PrepPh to

(NP!+Adjs left the
(PrepPh of (NP!+Adjs spot this»»)

(IMPERATIVE TVl+NP (TV!-IDIOM write out)
(NPl+Adjs digit the

(Split!-Adj!+Loc
tens
(PrepPh to

(NPl+Adjs left the
(PrepPh
of (NP!+Adjs spot this»)

» »
(IMPERATJVE TVl+NP (TVI-IDIOM write out)

(NPl+Adjs answer the
(PrepPh in (NPl+Adjs spot the next open»»

(IMPERATIVE TVl+NP (TVI-IDIOM write out)
(NPl+Adjs answer the

(PrepPh in (NPl+Adjs spot the next» open»

118

(IMPERATIVE TVI+NP (TV I-IDIOM write out)
(NPI+Adjs digit the

(Splitl-Adjl+Loc
singles
(PrepPh in (NP!~dj8 spot the next open»»)

(IMPERATIVE TVI+NP (TVI-IDIOM write out).
(NPj+Adjs digit the

(Splitl-Adjl+Loc
singles (PrepPh in

(NPI+Adjs spot the next»)
open))

(IMPERATIVE TVI+NP (TV!-IDIOM write out)
(NPI+Adjs digit the

(Splitl-Adjl+Loc
tens
(PrepPh to

(NPI+Possl+NP (NPI+Adjs left the) of
(NP I+Adjs SpOt this»»)

)
(IMPERATIVE TVI+NP (TVI-IDIOM write out)

(NP I+Poss I+NP
(NPI+Adjs digit tbe

(Split!-Adjl+Loc
tens (PrepPh to (NP!+Adjs lett the»»

of
(NPI+Adjs spot this»)

(IMPERATIVE VPI+Advs
(TVI+NP (TVI~IDIOM write out)

(NPI+Adjs digit the
(Splitl-Adjl+Loc
tens (PrepPh

to (NPI+Adjs left the»»)
(PrepPh of (NPI+Adjs spot this»)

(IMPERATIVE VPI+Advs
(TVI+NP (TVI-IDIOM write out) (NPI+Adjs digit the tens»
(PrepPh to (NPI+Adjs left the»
(PrepPh of (NPI+Adjs spot this»)

(IMPERATIVE VP!+Advs look (PrepPh at (NPI+Adjs top the»
(PrepPh of

(NPI+Adjs column the
(Splitl-Adjl+Loc
next (PrepPh

to (NP!+Adjs left the»»»
(IMPERATIVE VPI+Advs look

(PrepPh at
(NPI+Poss!+NP (NPI+Adjs top the) of

(NP!+Adjs column the next»)
(PrepPh to (NPI+Adjs left the»)

(IMPERATIVE VP!+Advs look (PrepPh at (NPI+Adjs top the»
(PrepPh of (NPI+Adjs column the next»
(PrepPh to (NPI+Adjs left the»)

(

(

)

119

(IF (DECLARE Subjl+Verb (NPl+Adjs number a)
(VPl+Advs appears (PrepPh before (NPl+Adjs bar a»»

(IMPERATIVE VPl+Advs (TVl+NP add it)
(PrepPh to (NPl=RelClause you remembered what»
(PrepPh from (NPl+Adjs column the previous»»

(IMPERATIVE VPl+Advs (TVl+NP add it)
(PrepPh to (NPl=RelClause you remembered what»
(PrepPh from (NPl+Adjs column the previous»)

(IMPERATIVE TVl+NP (TVI-IDIOM write out)
(NPl+Adjs digit the

(Splitl-Adjl+Loc
singles. (PrepPh of (NPl+Adjs answer the»»)

(IMPERATIVE VP l+Advs
(TV!+NP (TV!-IDIOM write out)

(NPl+Adjs digit the singles»
(PrepPh of (NPl+Adjs answer the»)

(IMPERATIVE TVl+NP (TVI-IDIOM write out)
(NPl+Adjs digit the

(Splitl-Adjl+Loc
tens (PrepPh to (NPl+Adjs left the»»)

(IMPERATIVE VPl+Advs look (PrepPh at (NP!+Adjs spot the top»
(PrepPh in (NPl+Adjs column the»
(PrepPh to (NPl+Adjs left the»)

(IMPERATIVE VP l+Advs look
(PrepPh at

(NPl+Adjs spot the
(Splitl-Adjl+Loc
top (PrepPh in (NPl+Adjs column the»»)

(PrepPh to (NPl+Adjs left the»)
(IMPERATIVE VP 1+Advs refer back

(PrepPh to
(NPl=Rproll+S when

(DECLARE Subj l+Verb you
(and
(VPl+Advs

(TVedl+NP added
something)

(PrepPh
to
(NPl+Adjs total the»)

looked»))
down)

(

(

120

Appendix 9. Dataflow Charts

This appendix describes the overall organization of the robot software
in terms of data flow. Although the system may be divided into various
stages from English input to execution (parser system, translator,
operator-language semantics, primitive runtime procedures), there is
another division of the software which is orthogonal to this, the two
major modes of operation. These modes are batch-corpus and interactive;
the latter can be subdivided into table-lookup and on-the-fly processing.

When processing the corpus in batch mode, the whole corpus is passed
through the preparser, eliminating all duplicate sentences, then all
those results are passed through the main parser en masse, then all
the main-parser output is passed through the postparser en masse,
then all the postparser output is passed through the table-driven
translator en masse. There are two advantages to this method. First,
by doing as much as possible at one time in a batch file, we can avoid
having to manually supervise these stages of proceSSing, can let them
run automatically at night when the system load is light, and then the
next time we're online we can randomly browse the report files t.hey
generate looking for problems and fixing the most urgent ones firSt
instead of having to see problems in chronological order as they are
generated in real time. Second, t.he current system builds up tables of
all the results, that is, a mapping from English to parsed-English to
operator-language, which can later be used by table-lookup mode. This
means we never have to do any of this processing while the user
(teacher, trainer) is waiting at the terminal. It can all be done
ahead of time, except for sentences which aren't in the corpus, which
must be done on the fly.

When running the robot in interactive mode, two sub-modes are used.
First we try just looking in the tables that were built up during
batch-corpus mode. If we find what we need, we don't have to do any
actual computing of parsing or translating. Second, if table-lookup
failed, we run the parser system or translator system (whichever
failed, usually both, but sometimes just one) interactively. This
takes a considerable time, especially in cases where the main parser
generates many tens of bad parses which must be purged by the
postparser. But there is one saving grace. If a particular sentence
is used more than once in a single session, it must be parsed and
translated only once, because after running the interactive parser We
save the result in the parser lookup-table, and after running the
interactive translator we save that result in the translator
lookup-table, so that on subsequent input of the same sentence the
table-lookup will succeed. If two different English sentences give the
same parse, then since the parse and translation are handled
separately, only the parse will have to be done for the second
sentence, the translation that was entered for the first sentence
being found for the second sentence.

(

(

121

There is one complication in the data flow for the batch mode.
Although the parser system is pretty workable, producing correct
parses for all our corpus sentences currently (thanks to the exception
list for the postparser which fixes the residual problems not yet
fixed in the basic system), the translator is not so good. There are
about ten sentences that do not translate correctly. Thus if We used
the output from the batch-mode translator as is, those sentences would
bomb out when we tried to run the training steps containing them.
These include the final versions of the addition and subtraction
algorithms that we were concentrating on getting working. Such a
situation would be intolerable. Therefore instead of using the actual
output from the translator we are using a table that we maintain
semi-manually using an interactive text editor. In most cases we just
copy the output from the batch-mode translator across, but in cases
where we discover that output is incorrect We replace it with what we
consider to be "more correct" operator language. For some sentences we
have specifically adapted the table version of the operator language
to make the interpretor work correctly on it. This is true of one or
two of the 'refer back' or 'continue' sentences in the addition or
subtraction algorithms. To keep track of the current status of the
translator, We have utilities that compare the actual Output of the
batch-mode translator with the table we've maintained semi-manua11y,
making a report of any differences, which we can then study in an
effort to improve the translator. An alternate method of handling this
"deficiencies in translator" problem would be to install in these
difficult cases hardwired translations, in a similar way to the
exception list used by the postparser. The most obvious way to do
this is to include gestalt productions in the table used by the
translator, that is, to provide productions which map these particular
sentences, or their offending parts, directly across in an
unstructured way. If we did that, the output from the translator could
be used directly in the same way we use the output from the
postparser directly, but we would lose the diagnostic capability of
quickly seeing which problems remain.

Below is a dataflow chart of our overall system. On the first chart is
the dataflow for batch mode, including an indication where our
utilities compare the manually-edited translator lookup-table with the
actual batch-mode translator output to generate a report which we then
use to decide where to do further editing on the lookup table or where
we might improve the translator. On the second chart is the dataflow
for interactive mode, including four modes of input of English
sentences (TTY, training-step, sourcefile-debug-script,
disk-canned-script) and two modes of processing (table lookUp and
on-the-f1y processing).

_ _"_ ~_ , ..,.._~, ,,,..',~ , ~ ~.•~,._ ~_._" ...•~••~..~ _.-_ ••_~_~.~; ..:.~..: -:.:..'..::..:.:.~'~_.,>..:..~, .'..J.'~.;..~;",;-"'< - .• -'".;

.-------,
.._;:....."'. :- ••..;...,,_~~, •.:.:._'" •.;..~c.:..:.....··-:..;..:..;...::_,:~._c....:..-'-_:...,~··_··· __-_.. -~_.__.• ------""--.-..•--, -- -- -_.

,.------- ---.

DATAFLOW -- BATCH HODE

---:)!LrSPify English
I,

~:ng se~ }. (Used for training-step runs)
in LISP format·

*IPreparseri

bne copy of-each
different sentence
formatted as very
long lines

....
N
N

for table-lookup parse)

._> (Used to document our crufty grammar)

Extract word, ~. Listofwords used as\ ;;: (Used for preliminary check
from ~rammar terminals in gramml:lr) of typed-in sentences)

R-eport showing arr
parses generated by
SAIL parser but
rejected by postpnrse_

--~
Correct parsea-l
tn pretty forma~

~IS.§{:~:~..
~recE parse
~__ LISP form~d ' >(Used

--_'~""*_..-'-"
Remove multiple pnrSl~

and strip off t~t1gUsh,

---- ~
Parser grammar I" 1" j~ grammatj
as list of rule .~ ~~~~TE .f

IPri'iser gra~
n LISP forma---,.....-

Et!~ ~!postpar;erl ;)

~

,·XUsed for table-lookup trnnslC1tion)

• (Not yet suitable for table-lookup translation)

s
INnnunl uti Ie tol
mrllde ttlhl p

__ I

1~~~~~~l~~~~~A~~r~~~:re~~rrran.lat~ }IT<anAlarro"?J . . .
'~lSP ~~

"',1;"

~1I.ISPify translation 8ramma~ J
•rr~<it\·luf1o;;·.giamiii~ h> l~ompurQ mach in c andj

:In t.ISI' £ormot edited tables
CompuQu

~U!lle translation ~rnmmn~ ernnalat10 {c ort ~f ditfDrenceli
aramlllnf .•-::::::::- - ----

,·f .._ •• .. t

,--- -.........
l·rnnslal:lo1'i~grnmm~.
as list of rule:-,J

-------~-

123

DATAFLOW -- INTERACTIVE MODE

11
I ,

) j
j i

I '

It

-.Jo
<Operator language S-expression>

I
RU~ime IE:---~~
execution -

/

sentence somehow I

~--4) LISPified sub­
traction prob­
lem

<Sentence as word-list>

/

ubtractionpiODrein ~ I LISPify

<Program constant>

List of sentences
LISP format·
(hand-edited)

Parser ta e
(from batch mode)II----=->1 Parse somehow II .

'"<parsedj.English S-expression>

---->'" I Translate somehow I-

tAcd~d8i~t;i~0~n~p~r~0~b~1~e~m~sa---~]l1 LISPifYj--,.

I
·1
j

-·f
-j

1.,
.j

1
.~

(
.'

Database ot:
programs so­

lfar compiled

