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BEHAVIORISTIC FOUNDATIONS OF UTILITyl

Patrick Suppes

In the past two decades there has been an intensive development of the

subject of decision making. A variety of objectives and viewpoints has

dominated the constructive as well as the critical work on the subject.

Nonetheless a pervasive goal of nearly all contributors has been the

elucidation of a theory of rationality for purposive behavior in situations

of risk and uncertainty. Intuitively we expect every considered judgment or

decision of a serious person to be rational in some definite sense. Certain

authorities would maintain even that every considered decision of any mammalian

organism is rational in the sense of representing the attempt to maximize some

significant quantity. The most prominent "maximization" analysis of rationality

is the thesis that the decision maker should maximize ,expected utility or value

with respect to his beliefs concerning the facts of the situation. To perform

this maximization, he needs to have, or to act as if he had, a subjective

probability function measuring his degrees of belief and a utility function

measuring ,the relative value to him of the various possible outcomes of his

actions or decisions.

1 This research was supported by the Rockefeller Foundation and the Group

Psychology Branch of the Office of Naval Research. I have benefited

from conversations with several people on the topic of this paper, but

most particularly from those with Donald Davidson, William K. Estes and

Duncan Luce. Portions of this paper were presented at an International

Colloquium on decision theory in Paris on May 27, 1959.
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It is not my purpose here to expound the expected utility theory of

behavior. An excellent detailed and leisurely analysis is Savage [13]. Rather

my concern is to explore the extent to which behavioristic foundations can

be supplied for utility. And I am using the term 'behavioristic' in the rather

narrow sense of the experimental psychologist. The static character of the

concepts of subjective probability and utility is suspect to the psychologist

and he resists accepting them as basic concepts of behavior. Ideally, what

is desired is a dynamic theory of the inherent or environmental factors

determining the acqUisition of a particular set of beliefs or values.

Moreover, in the notions of stimulus, response and reinforcement the experi

mental psychologist has a triad of concepts which have proved adequate to

explain much simple choice behavior. It is, therefore, a scientific problem

of some interest to try to use just these behavioristic notions to derive a

theory of subjective probability and utility.

In the first section I set forth the fundamental assumptions of stimulus

sampling learning theory, which is the most formally sophisticated theory yet

stated in terms of the concepts of stimulus, response and reinforcement. In

the second section I attempt to show how this theory may be used to derive a

utility function for various simple choice situations. This derived utility

function is for stochastic choice behavior of the kind studied by Davidson and

Marschak [3], Luce [10], Papandreou [12] and others. In the third and final

section the earlier results are related to Shannon's concept of entropy and

Luce's choice axiom.
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1. STIMULUS SAMPLING LEARNING THEORY

The basic theory to be used in this paper is a modification of stimulus

sampling theory as first formulated by Estes and Burke [2], [81, [9]. It is

most closely connected with a formulation given by Suppes and Atkinson [17],

but it also differs, in ways indicated below, from the latter. The axioms

are formulated verbally here, and although there is no attempt in this paper

to give a mathematically exact statement of the theory, it is hoped that the

relation between the fundamental axioms and the results derived later will be

reasonably clear, even to the reader without prior familiarity with the

literature.

The first group of axioms deals with the conditioning of sampled stimuli,

the second group with the sampling of stimuli, and the third with responses.

CONDITIONING AXIOMS

Cl. 2.~ every trial each st:!:mulus elem,,:nt is conditioned to exactly one

response.

C2. If ~ stimulus element is sampled on ~ trial it becomes conditioned

with pro~,!:~'!:.J,;.ity (J to the re~ponse (if ~y) which is reinforced on that triaJ,;..

C3. If no reinforcement occurs on ~ trial ther",- is ~ probability that

th",- sampled stimulus becomes conditioned to~ otl)er response.

c4. §.~'!:.mulus elements which ~ not sampled on a given trial do no~ change

thei,:: conditioning on that trial.

C5. The probability of ~ sampled stimulus element ~",-'!:.ng cond'!:.tioned is

independent of the trial number and the outcome of preceding ~rials.
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SAMPLING AXIOMS

Sl. Exactly one stimulus element is sampled on each trial.

th":. past pattern of reinforcement will change the probability of sampling

~ given element.

RESPONSE AXIOM

RI. 2'!: any trial that response is made to which the sampled stimulus

Detailed remarks about these axioms are to be found in Suppes and

Atkinson [17]. The major change from the version in [17] is to be found in

Axiom C3. There this axiom reads: "If no reinforcement .occurs on a trial

there is no change in conditioning on that trial." For the kind of experi-

mental situation to be considered below it is natural to adopt the modified

axiom given above as C3. A slight change in Axiom C5 has been made to

accommodate the major change in C3; otherwise the axioms given here are those

of [17].

Many readers may be particularly critical of the first sampling axiom, Sl.

There are at least two different kinds of remarks to be made in defense of the

assumption that exactly one stimulus element is sampled on each trial. In the

first place, this assumption is mathematically extremely convenient and it is

scarcely possible to distinguish, for the kind of experiments to be described
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here, between it and more "liberal" sampling axioms, as for example the

assumption that all stimulus elements in the basic stimulus set are sampled

with independent probabilities. Secondly, Sl may be made more intuitively

plausible by interpreting 'stimulus element' to mean patt~ of stimuli, for

it may be maintained that in any given situation an organism, at any given

moment, is sampling exactly one pattern of stimuli. (For a more detailed

discussion of the pattern concept, see Estes [7].)

We may consider two simple applications, which will be integrated into

our discussion of utility in the next section. These two examples should

serve ade~uately to illustrate how the basic axioms of stimulus sampling theory

are related to particular experimental situations in order to make predictions

about response behavior.

Suppose the task presented a subject is to predict on each trial exactly

which one of two lights will come on. Thus on each trial exactly one of two

reinforcing events, El or E2 , occurs. The subject indicates his prediction

at the beginning of each trial by pressing one of two keys, response Al or

A2 ,where Ai is the key under light Ei

given trial may be described thus:

The se~uence of events on a

trial begins with stimulus
stimuli conditioned ~ sampled
to A

l
or A2

response
~ A

l
or A2 ~

reinforcement
E

l
or E

2

possible change
~ in conditioning of

sampled stimulus •

Using the "independence of path" assumptions represented by Axioms C5

and S2, it may be shown that if we assume that the stimulus set S consists

of exactly one element then the se~uence of response random variables
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< ~l' ~, •.. , ~n' .,. > is a Ma.rkov chain for many schedules of reinforcement

satisfying the experimental conditions just described. (Here the value for

each n of the random variable A is 1 or 2 , according to whether the-n

Al or A2 response is made on trial n .) Using this result about Markov

chains and the description of events on a trial, we may, upon imposition of

a particular schedule of reinforcement, derive the transition matrix of the

Markov chain. For consideration at this point we introduce the simple ~ntingent

case of reinforcement, namely, the probability of an E
l

or E2 reinforcement

on trial n depends only on the response made on trial n. ThUS, using

notation common in the literature:

The states of the Markov process are Al and A2 • Being In state Al ' for

instance, means that the single stimulus element is conditioned to Al

The trees of the process are then:

6
Al

A
l

El : 11:
1 1-6

El :'2
1-6

A
l

A
2

Al A
2

6 A A
2E

2
:1- 2 E2 :1-11:2

l-e 1-6
-A A21
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The probabilities e and 1 - e occurring in the final branches of the trees

are derived from Axiom C2, which is concerned with the conditioning of

stimulus elements. For example, in the lower half of the first tree, an E
2

reinforcement occurs with probability 1 - "1 after the initial response Al

This initial response means that the single stimulus element is connected

(or conditioned) to ~ • However, an E
2

reinforcement occurs. With

probability e this reinforcement is effective in changing the connection

or conditioning of the single stimulus element to the A2 response.

We immediately derive from the two trees the following transition matrix

for the Markov chain:

The asymptotic probability Poo of an ~ response is easily computed

from this matrix. The probability Pn+1 of being in state A
l

is just:

the transition Now at asymptote

where

trial.

Pij is the transition probability of going from Ai

(Thus p is J'ust the entry for the i th row andij

matrix.)

to A. in one
J

jth column of
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whence

p = (1 - 6(1- "l))P + e "2 (1 - P ),co ·co co

and this simple linear equation has as its solution

(1)

It is worth noting that the asymptotic probability Pco is independent of

the conditioning parameter e

is to be found in Estes [6].

Experimental evidence .supporting equation (1)

Rather than derive further predictions for the simple contingent case of

reinforcement, I now turn to the second example, which I shall call the two-arm

bandit case of reinforcement. The name stems from the resemblance of the

experimental situation to that of playing a slot machine with two arms or levers

rat.her than one; on each trial a choice between the levers is made. (Mathe-

matical statisticians have, during the past few years, considered in detail what

is the optimal way to playa two-arm bandit for a finite number of trials when

the probabilities of pay-off of the two arms are unknown.)

The experimental situation, then, consists of choosing on each trial between

two levers. In the experiment to be described in somewhat more detail in the

next section, lever 1 is given a probability Ttl of paying, and lever 2 a

probability "2' Unlike the simple contingent case there is no "correction"

procedure, i.e., the subject is not told, or led to believe, that on each trial

exactly one of the arms of the '~andit" will payoff. If he chooses lever 1,

say, then either it pays off or it does not, without reference to the possible
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choice of lever 2. Such an analysis of reinforcement leads to an application

of Axiom C3: if lever i is chosen (i.e., response A.
1

occurs) and no

reward or reinforcement follows (event EO occurs), then there is a

probability Ei that the sampled stimulus will become conditioned to the

other response, i.e., choosing the other lever. Application of C3 to the

present situation seems natural and intuitively sound, but it is to be

emphasized that any uniform method, applicable to many other experiments,

for handling nonreinforcement trials would be premature in view of the highly

conflicting experimental evidence obtained by various investigators,

particularly in connection with the extinction of learning. The trees for

the one-element model may be drawn as follows (we have eliminated the e

and 1 -8 branches in case of reward, for they "lead "to the same result,

namely, retention in the same state with which the trial began):

A
l

E
l

: 11
1 E

2
: 11

2

A
l A

2

EO :1-111 El
A2 EO :1-112

E2

l-e A
l

l-E21

(Note that we use EO to designate the event of no reinforcement.)
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The trees yield as the transition matrix or the Markov chain:

Al A
2

Al ~ ",-. )
E

l
(1- 1(

1
)

1 1

A
2

E
2

(1- 1(
2

) 1- E2 (1- 11)

And by the same line or argument which led to equation (1) we obtain as

the asymptotic probability Poo or the Al response ror the two-arm bandit:

Ir El = E2 ' equation (2) simpliries to:

1 -11
2

= T(1::----11,-1')..:"+'7(-'-1---11-:-
2
')

In connection with these two applications or stimulus sampling theory,

it is important to emphasize that the asymptotic probabilities (1) and (2)

do not in any way depend on the assumption that there is exactly one stimulus

element. In ract, the results (1) and (2) hold on the assumption or any

rinite number or stimulus elements. To illustrate the methods or working with

more than one stimulus element, we may write down some or the trees and the

transition matrix ror the two-element model as applied to the case or the

two-arm bandit. The states or the Markov chain are no longer the responses

Al and ~ , but the possible partitions representing the conditioning or the
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be the two elements. We may

indicate any partition of the set (sl,s2) between the two responses Al

and A
2

simply by indicating which elements are conditioned to A
l

. Thus

the four states of the process maybe denoted by (sl,s2)' (sl)' (s2) and 0,

where o is the empty set (meaning .here that neither nor is

conditioned to A
l

if the subject is in state 0). We give the trees when

the subject begins in either state (sl,s2) or (sl); the other two trees

are similar to these. The one assumption needed, and not given in our funda-

mental axioms, is the probability of sampling sl as against that of sampling

s2 . Here we assume there is an equal chance of sampling .either, although

this is not very crucial to any of our results.

1-
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(sl)

E
l

: Jl
l 0

1 /
/)/

sl:2" /// EO :l-Jll.//~

(sl)
/ l-E

l//

(sl)

1 E2 (Sl,S2)
s2 :2"

EO :1-Jl2

Note that in the first tree either E
l

or EO must occur since both stimulus

elements are conditioned to A
l

, and thus only the A
l

response ocCurs

regardless of which element is sampled. This is not the case for the second

tree; if sl is sampled A
l

occurs and then either E
l

or EO ' but if

s2 is sampled A
2

occurs and then either E
2

or EO. The transition matrix

to be derived from these two trees and the other two not shown here is the

following:
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(sl,s2) (sl) (S2 ) 0

--------

(sl,s2 ) 1-"1(1-"1)
1

~l (1-"1)2"1 (1-"1) 0

(sl)
1 1 1 1
2"2 (1-"2) 1-2"1(1-"1)~2"2(1-"2) 0 2"1(1-"1)

1 1 1 ) 1
(s2 ) 2"2(1-"2 ) 0 1-2"1(1-"1)~2"2(1-"2 2"1(1-"1)

1
~2(1-"2) 1-" (1-" )0 0 2"2(1-"2 ) 2 2

Note that the probability of an Al response when in state (sl,s2) is one,

when in states or is 1
2 ' and when in state o is zero. Whence

from computation of the asymptotic probabilities for each state we may at once

determine the asymptotic probability of an Al response. As already remarked,

the result is again e~uation (2). We shall not consider the details of these

computations here. In fact, at this point we end the consideration of stimulus

sampling theory in order to turn to utility theory proper.

2. urILITY

As indicated in the introductory section, in this paper I am mainly

concerned with a utility function for the kind of choice behavior which has

come to be labeled, not entirely happily, n stochastic. n Roughly speaking,

the central character of stochastic choice behavior is that upon presentation

of two alternatives a and b , with a choice of one re~uired, under essen-

tially identical circumstances sometimes a will be chosen by a subject and

sometimes b. Let p(a,b), then, be the probability that a is chosen
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over b. A (stochastic) utility function for a set of alternatives A is a

real-valued function u defined on A such that for every a, b, c and d

in A

(4) p(a,b) ::: p(c,d) if and only if u(a) - u(b) ::: u(c) -u(d)

Combining results in Suppes andWinet [18], Suppes [16] and Davidson and

Marschak [3], it may be shown that if the set A and the probabilities p(a,b)

satisfy the following axioms, then there exists a stochastic utility function

for A, and moreover this function is unique up to a positive linear

transformation.

Axiom Ul.

Axiom U2.

p(a,b)+ p(b,a) = 1

O<p(a,b)<l

Axiom U3. If p(a,b)::: p(c,d) then p(a,c)::: p(b,d)

Axiom u4. There is a c--- --- in A such that

p(a,c)= p(c,b)

Axiom U5. If p(c,d)> p(a,b) > ~ then there is an e in A such

1
that p(c,e) > 2" and p(e,d) :::p(a,b)

1Axiom u6. (Archimedean Axiom). If p(a,b) > 2" then for every

1;Erobability q such that p(a,b) > q > 2" there is ~ positive integer n

~uch that q::: p(a,cl )= P(cl ,c2 ) '" ... =P(cn,b) > ~
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Now one implication o~ these six axioms is that A must be an i~inite

set i~ ~or at least two members a and b o~
1

A , p(a,b) f 2" Simple

and natural conditions, which are not unduly restricted and which will

guarantee existence o~ a stochastic utility ~unction ~or a ~inite set ,A,

are not easily ~ound. An unworkable recursive, but not ~inite, axiomatization

can be given by enumerating ~or each n all isomorphism types. Some o~ the

~undamental di~~iculties o~ ~inite axiomatization are brought out in Scott

and Suppes [14]. The upshot o~ these axiomatic problems, it seems to me, is

that ~or ~inite Sets o~ alternatives we have no clear and intuitively natural

ideas in terms only o~ probabilities o~ choice o~ the notion o~ utility, and

thus o~ the notion o~ rationality ~or such situations.2

On the other hand, we may apply the results o~ the preceding section to

indicate how ~rom the axioms o~ stimulus sampling theory a utility ~unction

may be derived ~or ~inite sets o~ alternatives. To begin with, let us consider

2 Under a rather natural continuity assumption, which is however stronger

than u4 -u6, Debreu [5] has shown that the quadruple condition (U3) is

necessary and s~ficient ~or the existence o~ a utility ~unction satis

~ying (4). Of course, granted u4 - u6, and the "technical axioms" Ul and

U2, it is obvious that the quadruple condition is also necessary and

su~~icient in this context. It may also be remarked that to give

necessary and s~~icient conditions on the set A and the ~unction p,

without continuity or ~initeness restrictions, is the extremely di~~icult

mathematical problem o~ classi~ying all isomorphism types representable

by a real-valued ~unction u satis~ying (4).
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the second eX8Jllple of the application of stimulus s8Jllpling theory, n8Jllely,

the two-arm bandit. On each trial the subject must choose between two

alternatives, but now, to make the utility considerations interesting, we

assume there is a set of alternatives available, with choice restricted on

each trial to one of a pair. Clearly alternative a does not in and of

itself have more value than alternative b; the value of a is determined

by the probability of pay-off, as is that of b. Thus the experimenter may

manipulate the value of any alternative according to his determination of its

pay-off function. We seek a function u satisfying (4). Now according

to (2) of the last section, at asymptote,

p(a,b)

where n is the probability of pay-off of alternative a when it is chosen,a

E is the probability the s8Jllpled stimulus will become conditioned to thea

other alternative when the choice of a is not rewarded, and similar defini-

tions hold for "to and Eb . In view of (5) to satisfy (4), we need to

find a function u such that

(6) if and only if u(a)-u(b) ~ u( c) -u(d).

Let P ~ E (1 - n )a a a

may then be written:

for every a in 3A The right-hand inequality of (6)

3 I assume throughout that 0 < na , €a < 1 , for every a in A.
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Pb Pd
-~-'-- > --'=-
P+P-P+P'abc d

but (7) holds, if and only if

which holds, if and only if

which again holds, if and only if

1 1- -
Pa Pc

-1->-1-
- -
Pb Pc

which, finally, holds, if and only if

(8) 1log 
Pa

- log
1 . 1- > log
Pb - Pc

1log 
Pd

From (6), (7) and (8) we conclude that an appropriate utility function is,

for a in the set A of alternatives:

1uta) = log ~~---~€(l-n)
a a
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A , we may take the simpler function

u' (a) 1
= log~

a

It is straightforward to show that the utility function defined by (9) is

uni~ue up to a positive linear transformation if the reasonable restriction

is made that any acceptable utility function must be continuous in € and
a

TI Moreover, from the existence of a function u satisfying (4), it
a

immediately follows that the asymptotic choice behavior predicted by stimulus

sampling theory satisfies all the various conditions of weak and strong

stochastic transitivity discussed in the literature, as well as the ~uadruple

condition expressed by Axiom U3 above. It should be mentioned that these

results do not necessarily hold during the course of learning; in particular

the utility function defined by (9) does not satisfy (4) during the course of

learning. This fact, it seems to me, accords well with the widespread assump-

tion, albeit often tacit, that the utility function of a person is an

e~uilibrium concept.

It is, of course, to be emphasized that the utility function defined by

(9) is not that of the mathematical statistician bent on maximizing his

monetary pay-off in the long run. It should be abundantly clear that the

whole theory of probabilistic choice behavior is not meant to apply to such

a person. For under the pay-off conditions defined here, if TIa > "b the

statistician should have atasymptote p(a,b) = 1. The point of (9) is rather

to define a utility function which may be used to predict the actual behavior
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o~ all but the statistically sophisticated ~ew. Numerous empirical studies

(Mosteller and Nogee [11], Davidson, Suppes and Siegel [4], Papandreou [12],

Atkinson and Suppes [1], Davidson and Marschak U]) have clearly shown that

naive subjects do not behave like mathematical statisticia-ns. Experimental

data on utility ~unctions as de~ined by (9) for the two-arm bandit situation

will be reported elsewhere.

The preceding analysis also has direct application to the ~irst example

o~ simple contingent .reinforcement discussed in the preceding section. By

replacing "2 by 1 - "2 ' ~orpurposes of symmetry, thus having as rein

~orcement probabilities P(EI IAl ) = "1 and P( E2 1 A2 ) = "2 ,we may,

obviously, get a utility ~unction satisfying (4) by taking

u(a) 1
= log-

1-"a

Further remarks on this case do not seem necessary.

The interesting question of generalization, it seems to me, is that of

considering situations in which choice is made ~rom one.o~ n alternatives.

In classical economic theory, the resolution o~ this choice problem is

immediate: simply choose the most preferred item. But, as far as I know,

with the notable exception o~ Luce [10] there has been little if any analysis

o~ stochastic choice behavior when the choice set has more than two alterna-

tives. To describe this situation, let us use the notation p(a,A) to mean

the probability a is chosen in preference to any member of A, with the

understanding that (a}LlA is the full choice set available, i.e.,
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p(a,A) + p(A,a) ; I , where p(A,a) means the probability an element .of A

is chosen in preference to a .4 Beginning simply with p(a,A) , it is far

from clear to me what axioms of rational behavior one might expect an

organism to satisfy, in order to guarantee the existence of a utility

function. In fact, it is not completely obvious what should be the defining

characteristic of a utility function. In analogy to (4) I suggest:

(10) p(a,A) ::: p(b,B) if and only if u(a) - u(A) ::: u(b) - u(B) •

Condition (10) requires the utility of a set of alternatives to be defined,

but it by no means implies that this set function need be additive, i.e.,

we need not have if A and B are disjoint sets that

u(AUB) ; u(A) + u(B)

On the other hand, the intuitive interpretation of p(a,A) suggests that

if A is a subset of B then the utility of A is equal to or less than

B , for in some sense the utility of A is the overall value weighting

assigned to the set in deciding to choose a rather than any member of A .

Also, it seems reasonable to require that if the utility of A is equal to

or greater than that of B and a set C is added to both A and B ,

with C disjoint from both A and B then the utility of AUC is equal

to or greater than that of BU C . These two principles may be summarized:

4 From this point on, X rather than A will represent the total set of

available alternatives.
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(11) if AS:B then u(A):s u(B) ,

(12) if Ane = Bne = 0 and u(A) < u(B) then u(AUe):s u(Bue)

(Evidently (11) and (12) would not be acceptable if some of the alternatives

had negative pay-offs, a possibility which we exclude here.)

What I now want to show is that for this multi-choice case a utility

function satisfying (10), (11) and (12) may be derived from the axioms of

stimulus sampling theory by generalizing the approach to the two-arm bandit

problem. For simplicity I shall again consider only the model with one

stimulus element, although the results given here may easily be extended to

a finite number of stimulus elements. The axioms given in the preceding

section do need to be supplemented in one important respect, namely, we shall

make Axiom 03 more definite by assuming that .when a chosen response is not

reinforced, the probability of the stimulus element becoming conditioned to

some other response is uniformly distributed over the remaining set of available

responses. Thus, in the notation of Section 2, if there are n other available

responses and total probability E
i

that the stimulus element will become

conditioned to some other response than Ai after Ai is not reinforced,

is the probability it will become conditioned to j r ithen

and in the available set.

A. , for
J

Keeping this notation in mind, it is easy to .

see that the transition matrix for n +1 possible response s (i.e., n + 1

possible choices) has the following form:
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A
l

A
2

An+l

l-El (1-]"(1)
El

ElAl
-(1-]"( ) -(1-]"( )
n 1 nl

E2
l-E2 (1-]"(2)

E
2A

2
-(1-]"( ) -(1-]"( )
n 2 n 2

(13)

A
n+l

E +1
-E.-(l_]"( )

n n+l
l-E (1-]"( )n+l n+l

Following standard notation, let u.
J

be the asymptotic probability of

response A
j

. Then, as is well known, the asymptotic probabilities u
j

may be obtained as the solution of the system of linear equations

(14 )

E. (1-]"(. )
u

J
. = (l-E.(l-]"(.))u. + L ~ ~

J J J m n

" u. = 1 ,L J

for j = 1, ••• , n + 1

provided the matrix (13) satisfies certain regularity conditions, which are

indeed satisfied here because every entry in the matrix is strictly positive.

It is not difficult to show that the solution of (14) is:

11 E.(l-]"(i)
irj ~
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Now p(a,A) = u ,and if we divide the numerator and denominator of the
a

7i p. , where as before
j€X J

and the set of alternatives is X = AU{a} , then

(16) p(a,A) =

~ lip·
j€X J

On the basis of (16) we have a simple chain of e~uivalences like that leading

from (7) to (8), which yields that p(a,A) ~ p(b,B) if and only if

(17) log lip - log ~l/p. >
a j€A J

log llpb - log 2:= lip. ,
j€B J

and thus to satisfy (10), we define a utility function u for any non-empty

finite set A of alternatives as:

(18) utA) = log L::: lip.
jEA J

Moreover, we may use (18) to generalize (10) immediately to the

'" ~probabilities p(A,A) ,where A is the complement .of the set A with

r-'
respect to the total set of alternatives, i.e., AUA = X The inter-

~

pretation of p(A,A) is that this is the probability of choosing an
N

alternative from A rather than from its complement A. We observe first

that (16) yields:
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L lip·
IV A J

p(A,A) = --=-----
L lip. + L lip·
A J A J

Manipulations similar to those already carried out then result in:

(20 )
IV (I.) IV rv

p(A,A) ~ p(B,B) if and only if u(A) - u(A) ~ u(B) - u(B)

It is easily verified that the utility function u defined by (18)

satisfies (11) and (12) as well as (10) and (20). If u were also an

additive set function it would be more appropriate to call it a subjective

probability function. It seems to me that its logarithmic rather than

additive character is intuitively sound. In particular, the marginal utility

of adding another alternative to a set of such is appropriately a decreasing

function of the size of the set. In other words, the utility function defined

by (18) has the classical property that as wealth increases each additional

unit has decreasing marginal utility.

4. RELATIONS TO OTHER THEORIES

To begin with, I want to show that the entroP,y of any set of alternatives

x , probability distribution p, and partition Tf of X is a negative

linear transformation of the expected utility of (X,p,Tf) 5 Following the

5 A partition of a set X is a family of non-empty, pairwise disjoint

subsets of X such that the union of all sets in the family is X.
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well-known work of Shannon (see, e.g •. , Shannon and Weaver [1949]) on the

theory of information, the entropy H of (X,p,Tr) is defined as:

(20 ) H(Tr) = - L p(A,A)lo~p(A,A)

AETr

And the expected utility ~ (u,Tn is defined in the standard manner as:

(21)

Now

g (u,Tr) = L p(A,A)u(A)

MTr

u(A) = log L l/p.
A J

Ll/p.
A J

= log . + log 2:: 1/p .
L l/p. X J
X J

= ex lo~p(A,A) + j3 ,

where ex = log 2

both independent

and j3 = log L l/p.
X J

of rr .6

, and it is clear ex and j3 are

6 When no base of a logarithm is indicated, it is understood to be e
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Substituting this last result for u(A) into (21) we have

G(u,Tf) ; E p(A,'A)[o: lo~p(A,A) + ~]

A€Tr

; - 0: H (Tr) + ~ ,

the desired conclusion. It is to be noticed that the finest partition of X

maximizes entropy, whereas the coursest one maximizes expected utility (With

respect to the set of all partitions of X ).

I now turn to consideration of Luce' s choice axiom ([10], p. 6) which we

may formulate as follows: if ASB£X then

(22 )

where PX(A) is the probability that an element of A is selected from the

total choice set X. Thus if AU'A ; X , then in the notation used earlier,

r-'

PX(A) ; p(A,A) . The purpose of the subscript usage is to indicate an

explicit change in the total set of available alternatives.

Without further assumptions (22) cannot be derived from the postulates

for learning theory given at the beginning, because they include no assertions

about the constancy or continuity of behavior when the number of available

responses is .changed. However, to derive (22) we need add only the postulate

that the conditioning parameter €i of response A.
l

for every i is

independent of what subset .of the alternatives X is available. Granted

this additional assumption about conditioning, derivation of Luce's axiom is

a simple matter, for
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L lip.
A J

=
L lip.
B J

Ll/p·
B J

L lip.
X J

Using his choice axiom Luce proves the existence of a ratio scale v(j)

([101, pp. 20-28) with the property that

L v(j)
APX(A) = ....:.:.._-
L v(j)
X

The relation of this additive ratio scale to the utility function u

defined by (18) is simply

v(A) = keu(A) ,

where k is a positive real number.
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