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BEHAVIORTSTIC FOUNDATIONS OF UTILITYl

Patrick Suppes

In the past two decades there has been an intensive development of the
subject of decision making. A variety of objectives and viewpoints has
dominated the constructive as well as the critical work on the subject.
Nonetheless a pervasive goal-of nearly all contributors has been the
elucidation of a theory of rationality for purpeosive behavior in situations
of risk and uncertainty. Intuitively we expect every considered Jjudgment or
decision of a serious person to be rational in some definite sense. Certain
authorities would maintain even that every considered decision of any msammalisn
organism is rational in the sense of representing the attempt to maximize some
significant quantity. The most prominent "maximization” analysis of rationality
is the thesieg that the decision maker should maximize,expected utility or value
with respect to his beliefs concerning the facts of the situation. To perform
this maximization, he needs to have, or to act as if he had, a subjective
probability function measuring his degrees of belief and a utility function
measuring the relative value to him of the various possible outcomes of his

actions or decisions.

1 This research was supported by the Rockefeller Foundation and the Group
Psychology Branch of the Office of Naval Research. I have benefited
from conversations with several people on the topic of this paper, but
most particularly from those with Donald Davidson, William K. Estes and
Duncan Luce. Portions of this paper were presented at an Intermational

Colloguium on decision theory in Paris on May 27, 1959.




It is not my purpcse here to expound the expected utility theory of
behavior. An excellent detailed and leisurely analysis is Savage [13]. Rather
ny concern is to explore the extent to which behavioristic foundations can
be supplied for utility. And I am using the term ‘behavioristlic' in the rather
narrow sense of the experimental psychologist. The static character of the
concepts of subjective probability and utility is suspect to the psychologist
and he resists accepting them as basic concepts of behavior. Ideally, what
is desired is a dynamic theory of the inherent or envirommental Tactors
determining the acquisition of a particular set of beliefs or values.
Moreover, in the notions of stimulus, response and reinforcement the experi-
mental psychologist has a triad of concepts which have proved adequate to
explain much simple choice behavieor. It is, therefore, a scientific problem
of some interest to try to use Just these behavioristic notions to derive a
theory of subjective probability and utility.

In the first section I set forth the fundamental assumptions of stimulus
sampling learning theory, which is the most formally scophisticated theory yet
stated in terms of the concepts of stimulus, response and reinfdrcement. In
the second section I attempt to show how this theory may be used to derive a
utility function for various simple choice situations. This derived utility
function is for stochastic choice behavior of the kind studied by Davidson and
Marschak [3], Tuce [10], Papandreou [12] and others. In the third arnd final
section the earlier results are related to Shannon's concept of entropy and

Luce's choice axion.



1. STIMULUS SAMPLING LEARNING THEORY

The basic theory to be used in this paper is a modification of stimulus
sampling theory as first formulated by Estes and Burke [2], [8]1, [9]. It is
most closely connected with a formulation given by Suppes and Atkinson [17],
but it also differs, in ways indicated below, from the latter. The axioms
are formulated verbally here, and although there is no attempt in this paper
to give a mathematically exact statement of the theory, it is hoped that the
relation between the fundamental axioms and the results derived later will be
reasonably cléar, even to the reader without prior familiarity with the
literature.

The first group of axioms deals with the conditioning of sampled stimuli,

the second group with the sampling of stimuli, and the third with responses.

CONDITIONING A¥IOMS

Cl. On every trial each stimulus element is conditioned to exactly one

response.

C2. If a stimulus element is sampled on a trial it becomes conditioned

with probability ©O Go the response <i£ any)_which is reinforced on that trial.

C3. If no reinforcement occurs on a trial there is a probability that

the sampled stimulus becomes conditioned Eg some other responsge.

Ck. Stimulus elements which are not sampled orn g given trial do not change

their conditioning on thaf trial.

C5. The probebility of g sampled stimulus element being conditioned is

independent of the trial number and the outcome of preceding trials.




SAMPLING AXTOMS

81. Exactly one stimulus element is sampled on each trial.

S2. If on & given trial it is known what stimuli are available for

sampling, then no further knowledge of the subject's past behavior or of

the past pattern of reinforcement will change the probability of sampling

a given element.

RESPONSE AXTOM

Rl. On any trial that regponse is made to which the sampled stimulus

element is conditioned.

Detailed remarks about these axioms gre to be found in Suppes and
Atkinson [17]. The major change from the version in [17] is to be found in
Axiom C3. There this axiom reads: . "If no reinforcement occurs on a trial
there is no change in conditioning on that trial." For the kind of experi-
mental situation to be considered below it is natural to adopt the modified
axiom given above as C3. A slight change in Axiom C5 has been made to
accommodate the major change in C3: otherwise the axioms given here are those
of [17].

Many readers may be particularly critical of the first sampling axiom, S1.
There_are at least two different kinds of remarks to be made in defense of the
assumption that exactly one stimuius element is sampled on each trial. In the
first place, this assumption is mathemstically extremely convenient and it is

scarcely possible to distinguish, for the kind of experiments to be described



here, between it and more "liberal" sampling axioms, as for example the
assumption that all stimulus elements in the basic stimulus set are sampled

with independent probabilities. BSecondly, 51 may be made more Intuitively

plausible by interpreting ‘'stimulus element' to mean pattern of stimuli, for
1t may be maintained that in any given situation an organism, at any given
moment, is sampling exactly one patternrof gtimuli. (For a more detailed
discussion of the pattern concept, see Estes [7].)

We may consider two simple applications, which will be integrated into
our discussion of utility in the next section. These two examples should
serve adequately to illustrate how the basic axioms of stimulus sampling theory
arerrelated o particular experimentsl situations in order to make predictions
about response bhehavior.

Suppose the task presented a subject is to predict on each trial exactly
which one of two lights will come on. Thus on each trial exactliy one of two
reinforcing events, El or E2 , occurs. The subject indicates his prediction
at the beginning of each trial by pressing one of twe keys, response Al or
A2 sy Where Ai is the key under light Ei . .The sequence of events on a

given trial may be described thus:

trial begins with stimulus response ~ reinforcement poesgible change

stimuli conditioned — gampled — A  or A, - E or E, — in conditioning of
i 1 2 1 .

to Al or A2 _ sampled stimulus .

Using the "independence of path" assumptions represented by Axioms 5
and 82, it may be shown that if we assume that the stimulus set © .consists

of exactly one element then the sequence of response random variables




< éi’ §2, eary éh’ «s. > 1is a Markow chain for many schedules of reinforcement
sabisfying the experimental conditions just described. (Here the value for
each n of the random variable én is 1 or 2 , according to whether the
Al or A2 response is made on trial n .) Using this result about Markov
chains and the description of events on a trial, we may, upon imposition of
a particular schedule of reinforcément, derive the transition matrix of the

Markov chain. For consideration at this point we introduce the simple contingent

case of reinforcement, namely, the probability of an El or E2 reinforcement

on Ltrial n depends only on the response made on trial n . Thus, using

notation common in the literature:

P(E 18) = m
P(E, [2,) = =,

.The states of the Markov process are A, and A2 . Being in state A

1 1 for

instance, means that the single stimulus element is conditioned to Al .

The trees of the process are then:




The probabilities & and 1-8 occurring in the final branches of the trees
are derived from Axiom C2, which is concerned with the conditioning of

stimalus elements. For example, in the lower half of the Tirst tree, an E2

reinforcement occurs with probability - ﬂl

This initial response means that the single stimulus element is connected

after the initial response Al .

{or conditioned) to Al . However, an E2 reinforcement occurs. With

probability © this reinforcement is effective in changing the connection
or conditioning of the single stimulus element to the A2 response.
We immediately derive from the two trees the following transition matrix

for the Markov chain:

A A
A l-e(l-—:f[l) 6(1-:1:1)
A2 8 :rE2 1-6 112

The asymptotic probability Pa: of an Al response is easily compubted

Tfrom this matrix. The probability p

il of being Iin state A, 1is just:

1
Pne1 T P11Pp + P2l(l“ Pn) 4

where Pij is the transition probability of going from Ai to Aj in one
trial. (Thus pij is just the entry for the ith row and jth column of

the transition matrix.) Now at asymptote




whence

P = (1-06(1-m))p +Omn,(l-p_)

and this simple linear equation has as its solution
(1) Py = T -
1

It is worth noting that the asymptotic probability Poo is independent of
the conditioning parameter © . Experimental evidence supporting equation (1)
is o be found in Estes [6].

Rather than derive further predictions for the simple contingent case of
reinforcement, I now turn to the second example, which I shall call the two-arm
bandit case of reinforcement. The name stems from the resemblance of the
experimental situation to that of playirg a élot machine with two arms or levers
rather than one; on each trial a choice between the levers is made. (Mathe-
matical statisticians héve, during the past few years, considered in detail what
is the optimal way to play a twoe-arm bandit for a finite number of trials when
the probabilities of pay-off of the two arms are unknown.)

The experimental situation, then, consists of choosing on each trial between
two levers. In the experiment to be described in somewhat more detail in the

next section, lever 1 is given a probability =n of paying; and lever 2 &

1
provability =, . Unlike the simple contingent case there is no "correction”
procedure, i.e., the subject is not told, or led to believe, that on each trial

exactly one of the arms of the "bandit" will pay off. If he chooses lever 1,

say, then either it pays off or it does not, without reference to the possible




choice of lever 2. Such an analysis of reinforcement leads to an application
of Axiom C3: if lever 1 is chosen (i.e., response Ai occurs) and no

reward or reinforcement follows (event E occurs), then there is &

0
probability. ei that the sampled stimuwlus will become conditioned to the
other response, i.e., choosing the other lever. Application of C3 to the
present situation seems natural and intuitively sound, but it is to be
emphasized that any uniform method, applicsble to many other experiments,

for handling nonreinforcement trials would be premature in view of the highly
conflicting experimental evidence obtained by various investigators,
particularly in connection with the extinction of learning. The trees for
the one-element model may be drawn as follows (we have eliminated the 6

and 1 -6 branches in cagse of reward, for they lead-to the same result,

namely, retention in the same state with which the trial began):

(Note that we use E

to designate the event of no reinforcement.)

o
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The trees yield as the transition matrix of the Markov chain:

A A

1 2
A |1-e(l-m) e (1-m)
A, EEUfja) l"EBUJJ%)

And by the same line of argument which led to equation (1) we obtain as
the asymptotic probability P of the Al response for the two-arm bandit:
62(1 - 1‘[2)

(2) Po = el(l—ﬂl)+ 62(1-11'2) :

If e, = €, , equation (2) simplifies to:

1 -x

2
) foo T TTom)r (L)

In connection with these two applications of stimulus sampling theory,
it is important to emphasize that the asymptotic probabilities (1) and (2)
do not in any way depend on the assumption that there is exactly one stimulus
element. In fact, the results (1) and {2) hold on the assumption of any
finite number of stimulus elements. To illustrate the methods of working with
more than one stimulus element, we may write down some of the trees and the
transition matrix for the two-element model as applied to the case of the
two-arm bandit. The states of the Markov chain are no longer the responses

Al and AE R buﬁ the possible partitions representing the conditioning of the
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two stimulus elements. Let 8 and S5 be the two elements. We may

indicate any partition of the szet {51’82} between the two responses Al

and A2 simply by indicating which elements are conditioned to Al . Thus

thé four states of the process may be denoted by [31’52}’ {sl}, {52} and O ,
where O 1is the empty set (meaning here that neither s, mor s, is
conditioned to Al if the subject is in state 0). We give the trees wheﬁ
the subject begins in either state {sl,se] or {sl] ; the other two trees
are simliliar to these. The one assumpbion needed, and not given in our funda-
mental axioms, is the probability of sampling s, as against that of sampling

S5 - Here we assume There 1s an equal chance of sampling either, although

this is not very crucisl to any of cur results.

{sl}se}
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Note that in the Ffirst tree either E or E must occur since both stimulus

1 9]

elements are conditioned to A, , and thus only the Al response occurs

1

regardless of which element is sampled. This is not the

tree; if Sl is sampled .Al occurs and then either El

o is sampled A2 ccecurs and then either E2 or EO .

to be derived from these two trees snd the other two not

=

following:

case for the second
or EO s but if
The transition matrix

shown here 18 the
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{sl,sg} {sl} {52} .,O
1 1
(81,85} | 1-ey(1-m) 5y (1-m;) 5y (1-7y) 0
1 1 1 1
{s;] 5ep(1-15)  1-3ey (1-m )-5e, (1-m,) 0 pep(1-7)
1 ' 1 1 1
(s5) gep(1-7,) 0 1-ze) (1om )-Ze, (1-7, ) 5y (1-my)
0 0 Le (1-%) Lo (1-x.) 1-¢,{1-x)
58\ -7 oo\ T o7,

Note that the probabilility of an Al response when in state {51,52] is one,
vhen in states {sl] or {52] is % , and when in state 0 1is zero. Whence
from computation of the asymptotic vrobabilities for each state we may at once
determine the asymptotic probability of an Al response. As already remarked,
the result is again equation (2). We shall not consider the details of these
computations here. In fact, at this point we end the consideration of stimulus

sampling theory in order to turn to utility theory proper.

2. UTILITY

As indicated in the introductory section, in this paper ¥ am mainly
concerned with a utility function for the kind of choice behavior which has
come to be labeled, not entirely happily, "stochastic.” Roughly speaking,
the central character of stochastic choice behavior 1s that upon presentation
.of two alternatives a and b , with a choice of one required, under essen-
tially identical circumstances sometimes 2 will be chosen by a subject and

gometimes b . Let p(a,b) » Then, be the probability that a 1is chosen
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over b . A (stochastic) utility function for a set of alternatives A 1is a

real-valued Tunction u defined on A such that for every a, b, ¢ and 4
in A
(4) p{a,b) > p(c,d) if and only if wu(a) ~u{b) > ufe) ~u(d) .
Combining results in Suppes and Winet [18], Suppes [16] and Davidson and
Marschak [3], it may be shown that if the set A and the probabilities p{a,b)
satisfy' the following axioms, then there exists a stochastic utility function
for A , and moreover this function is unique up to s positive linear
transformation.

Axiom Ul. p(a,b) .+ p(b,a) =1 .

Axiom U2. 0 < p(a,b) <1 .

Axiom U3. If p(a,b) > p{c,d) then »p(a,c) > p(b,d) .

Axiom Uk, There is a ¢ in A such that

P(aJc) = P(C;b) .

Axiom U5. If p(c,d) > p(a,b) >% then there is an e in A such

that plc,e) >3 and ple,d) > plap) .

Axiom U6. (Archimedean Axiom). If p(a,b) > % then for every

M=

probability q such that pla,b) > g > there ig a positive integer n

ST E ol

such that g > p(a,cl) = p(cl,cg) = ... = 'p(cn,b) >




- 15 -

Now one implication of these six axioms is that A must be an infinite
set if.for at least two members ‘& and b of A , pla,b) # %, . Simple
and natural conditions, which arernot unduly restricted and which will
guarantee existence of a stochastic utility function for a finite set}JA ,
are not easily found. An unworkable recursive, but not finite, sxiomatization
can be given by enumerating for each n all isomorphism types. Some of the
fundamental difficulties of finite axiomstization are brought out in Scott
and Suppes [14]. The upshot of these axiomatic problems, it seems to me, is
that for finite sets of alternatives we have no clear and intultively natural
ideas in terms only of probabilities of choice of the notion of utility, and
thus of the notion of rationality for such situations.e

On the other hand, we may apply the results of the preceding section Lo
indicate how from the axioms of stimulus sampling theory a utility function

may be derived for finite sets of alternatives. To begin with, let us consider

2 Under a rather natural continuity assumption, which is however stronger

than Uk -U6, Debreu [5] hes shown that the quadruple condition (U3) is
-necessary and sufficient for the existence of a utility function satis-
fying (4). Of course, granted Uk - U6, and the "technical axioms" Ul and
U2, it is obvious that the quadruple condition 1s also necessary ﬁnd
sufficient in this context. It may also be remarked that to give
necessary and sufficient conditions on the set A and the funetion p ,
without continuity or finiteness restrictions, is the extremely difficult
methematical problem of classifying all isomorphism types representable

vy a real-valued function u satisfying (4).
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the second example of the application of stimulus sampling theory, namely,
the two-arm bandit. On each trial the subject must choose between two
alternatives, but now, to make-the utbility consideraticns interesting, we
assume there is a set of alternatives available, with choice restricted on
each trlial to one of a palr. Clearly alternative a does not in and of
itself have more value than alternative b ; the value of a is determined
by the probability of pay-off, as is that of b . Thus the experimenter may
manipulate the value of any alternmative according to his determination of its
pay-off function. We seek a function u satisfying (4). DNow according

to (2) of the last section, at asymptote,

Eb(l"“b)

ea(l - z:a)+ eb(l -rtb)

(5) 'P(asb) =

where ﬂa is the probebility of pay-off of alternative a when it is chosen,
ea is the probability the sampled stimulus will become conditioned to the
other alternstive when the choice of &a is not rewarded, and similar defini-

tions hold for m  and e In view of (5) to satisfy {4), we need to

b

find a function wuw such that

e, (1-m ) eq(1-7,)

(6) ea(l-ﬂa)+eb(l-ﬂb) Zec(l—nﬁ)+ed(l-ndy

if and only if wu(a)-u{b)>ulc)-u(d).

Let p, = ea(l —ﬂa) for every a in A 3 The right-hand inequality of (6)

may then be written:

3 I assume throughout that 0 < T, €y <1, forevery a 1in A .




(7) p‘j > pf
: & pb P pd

g

but (7) holds, if and only if

which holdg, if and only if

Py _Pa
.__z__,
pa pc
" which again holds, if and only if
1 £
Pa S DC
r =17
pb pc

which, finally, holds, if and oniy if

(8) _ log sL-— log L > log g; - log E

a pb c pd

From (6), {7) and (8) we conclude that an appropriate utility function is,

for a 1in the set A of alternatives:

(9) | 'Ll(.&) = log —G_(—]]_-—:-JT_F .



- 18 -

If g, = € for every a and b in A , we may take the simpler function

ut{a) = log

1
1 - ‘
It is straightforward to show that the wutility function defined by {9) is
unigue up to a positive linear transformation if the reascnable restriction
is made that any acceptable utility function must be continucus in Ea and
ﬂa . Moreover, from the existence of a funciion wu satisfying (h), it
immediately follows that the ssymptotic choice hehavior predicted by stimuius
sampling theory satisfies all the various conditions of weak and strong
stochastic transitivity discussed in the literature, as well as the guadruple
condition expressed by Axiom U3 above. It should be mentioned that these
results do not necessarily hold during the course of learning; in particular
the utility function defined by (9) does not satisfy (4) during the course of
learning. This fact, it seems to me, accords well with the widespread assump-
tion, albeit often tacit, that the utility function of a person is an
equilibriuvm concept.

It ig, of course, to be emphasized that the utility function defined by

{9) is not that of the mathematical statistician bent on meximizing his
monetary pay-off in the long run. It should be abundantly cleay that the
whole theory of'probabilistic choice behavior is not ﬁeant to apply to such
a person. For under the pay-off conditions defined here, if ﬂa > T the
statistician should have atssymptote p(a,b) = 1 . The point of (9) is rather

to define & utility function which may be used to predict the actual behavior
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of all but the statistically sophisticated few. Numerous empirical studies
: l(Mosteller and Nogee [11], Davidson, Suppes and Siegel [4], Papandreou [12],
Atkinson and Suppes [1], Davidson and Marschak [3]) have clearly shown that
ngive subjects do not behave like mathematical statisticians. Experimental
data on utility functions as defined by (9) for the two-arm bandit situation
will be reported elsewhere.

' The preceding analysis also has direct application to the first example
of simple contingent reinforcement discuséed in the preceding section. By

replacing =, by 1-

5 , for purposes of symmetry, thus having as rein-

o

forcement probsbilities P(E_l [Al) = T

1 and P(E2 ]AQ) = m, , We may,

cbviously, get a utility function satisfying (h) by taking

u(a) = log

1
1.—né '
Further remarks on this case do not seem necessary.

The interesting guestion of generalization, it seems to me, is that of

considering situations in which choice is made from one of mn alternatives.
In classical economic thebry, the resoclution of this choice problem is
immediate: simply choose the most preferred item. But, as far as I Xnow,
- with the notable exception of Luce [10] there has been little if any analysis
of.stochasfic choice behavior when the choice set has more than two alterna-
tives. Té describe this situation, let us use the notation p(a,A) to mean
the probability a 1is chosen in preference to any member of A , with the

understanding that {a)}l/A is the full choice set availsble, i.e.,
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pla,A) + p(A,a) = 1 , where p(A,a) means the probability an element of A
is chosen in preference to s .h Beginning simply with pla,A) , it is far
from clear to me what axioms of rational behaviof one might expect an
crganism to satisf'y, in ordef to guarantee the existence of a utility
function. In fact, it is not completely obvious what should be the defining

characteristic of & utility function. In analogy to (&) I suggest:
(10) pla,A) > p(b,B) 1if and only if wu(a) - u(4) > u(b) - u(d) .

Condition (10) requires the utility of a set of alternatives to be defined,
vut it by no means implies that this set function need be additive, i.e.,

we need not have if A and B are disjoint sets that
u{AUB) = u(4) + u(B) .

Cn the other hand, the intuitive interpretation of p(a,A) suggests that

if A is a subset of B then the utility of A 1is egual to or less than
B , for in some sense the utility of A 1is the overall wvalue weighting
assigned to the set in deciding to choose a rather than any member of A .
Also, iﬁ geems reascnable to require that if the utility of A 1is equal to
or greater than that of B and a set C ig added to hoth A and B ,

with C disjoint from both A and B , then the utility of AUC is equal

to or greater than that of BUC . These two principles may be summarized:

b ‘From this point on, X rather than A will represent the total set of

avallable alternatives.
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._(11). if ASB then wu(4) < u(B) ,

(12) if ANC =BNC =0 and u(a) < u(B). then u{AUC) < u(BUC) .

(Evidently (11) and (12) would not be acceptable if some of the alternatives
had negativerpay-offs, a possibility which we exclude here,)

What I now want to show is that for this multi-choice case a utility
- funetion satisfying (10), (11) and (12) may be derived from the axioms of
stimulus sampling theory by generalizing the approach to the itwo-arm bandit
problem. For simplicity I shall again consider only the model with one
stimuius element, although the results given ﬁere may easily be extended to
a.finite number of stimulus elements. The axioms given in the preceding
section do need to be supplemented in one Important respeét, namely, we shall
make Axiom 03 more definite by assuming that when a chosen response is not
-feinforced, the probﬁbility of the stimulus element becoming conditioned to
some other response is vniformly distributed over the remaining set of available
'fesponses, Thus, in the notation.of Section 2, if there are n other available
responses and total probability ei that the stimulus element will beconme
conditioned to some other response than Ai after Ai is not reinforeced,
then ei/n is the probability it will become conditioned to Aj , for J# 1
and Aj in the available set. Keeping this notation in mind, it is easy to.
see that the transition matrix for n +1 possible responses (i.e., n+1

possible choices) has the following form:
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Al A2 “ o Ah+l
€ €
1 1
A L-gy (L-m ) 2 L-m) SR (1w )
€ €
2 2
Ay E;(l-ﬂé) l-eg(l-ﬁa) . .. n_(l_ﬂé)
(13)
£ €
n+l ntl
A —i_(l'“nﬂ) n (l'ﬂml) et l'eml(l_ﬂml)
Following standard notation, let uj be the asymptotie probability of
response Aj . Then, as is well known, the asymptotic probabilities uj

may be obtained as the solution of the systiem of linear equations

ei(l-ﬂi)

~—~" n
17d

; For J=1l,..4., n+l

o
H]

(l-ej(l_ﬂg))uj +

il
st
o

s

provided the matrix (13) satisfies certain regularity conditions, which are
indeed satisfied here because every entry in the matrix is strictly positive.
It is not difficult to show that the solution of (14) is:
i ei(l~ﬂi)

(15) u, = .

Y T e )
3 1A
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Now pla,A) = u, , and if we divide the numerator and denominator of the
right-hand side of (15) by JT p. , where as before p, = l/eJ.(l - rij)

“ jex ¢ J
and the set of altermatives is X = AU{a} , then

(16) pla,A) = ——— .

On the basis of (16) we have a simple chain of equivalences like that leading

from (7) to (8), which yilelds that p(a,A) > p(b,B) if and only if

b4

(17) log 1/p, - log z_ .l/;:)j > log 1/p, - log > 1/p

Jeh jeB J

and thus to satisfy (10), we define a utility function u for any non-empty

finite set A of slternatives as:

(18) w(A) = log > _ 1/p

seh 9

Moréover, we may use (18) to generalize (10) immedistely to the
probabilities p(A,K) , Where | X ig the complemént of the set A with
respect to the total set of alternatives, i.e., AU'K = X . The inter-
pretation of p(A ,K) is that this is the probability of choosing an
alternative from A rather than from its complement ’K .. We observe first

that (16} yields:



-2k o

2 /ey
~ i
(19) P(A,A) = o H

Z-l/pj +2_ 1o,
A A

Manipulations similar to those already carried out then result in:
nt Nt
(20) p(A,X) > p(B,B) if and only if u(A) - u(®) > u(B) - u(®)

It is easily verified that the ubtility function u defined by (18)
satisfies (11) and (12) as well as {(10) and (20). If u were alsoc an

additive set function it would be more appropriate to call it & subjective

probability function. It seems to me that its logarithmic rather than
additive character is intuitively sound. In particular, the mafginal utility
cof adding another alternative to a set of such is dppropriately a decreasing

| function of the size of the set. In other words, the utility function defined
by (18) nas t@é classical property that as wealth increases each additional

unit has decreasing marginal utility.

4, RELATIONS TO OTHER THEORIES

To begin with, I want to show that the entropy of any set of alternatives
X , probability distribution p , and partition T of X is a negative

linear transformation of the expected utility of (X,p,TT) .5 Following the_

5 A partition of a set X is a family of non-empty, pairwise disjoint

subsets of X such that the union of all sets in the family is X .
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well-known work of Shannon (see, e.g., Shannon and Weaver [1949]) on the

theory of information, the entropy H of (X,p,7{) is defined as:

(20) B(TT) = - Z _ p(4,K)10g,p(4,k)
Aeﬁ

And the expected utility & {u,T]) is defined in the standard manner as:

(21) £ (w,7T) = > p(a,B)u(a)
AE.TT
Now
-u(A) = log Z l/pj

Z /e,
Z

X

— + log Z l/p

tt

o loggp(A,??\:).-k B,

where O = log?2 and P = log > :I_/p{j ; and it is clear & and B are
X

both independent of T( .6

& ' When no base of a logarithm is indicated, it is understood to be e
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Substituting this last result for u(A) into (21) we have

E (w,T)

> o(A, K)o logzjé(A,’X) + B]
A57T

-aH(T) + B,

the desired conclusion. It is to be noticed that the finest partition of X

maximizes entropy, whereas the coursest one maximizes expected utility (with

respect to the set of all partitions of X ).
I now turn to consideration of Luce's choice axiom {[10}, p. 6) which we

may formulate as follows: if AEBEX then
(22) - py(8) = pp(A)py(3)-

where pX(A) is the probability that an element of A is selected from the

total choice set X . Thus if AUX = X s then in the notation used earlier,

pX(A) = p(A;K) . The purpose of the subscript usage is to indicate an
expliecit change in the total set of available alternatives.

Without further assumpbions (22) cannot be derived from the postulates
for learning theory given at the beginning, because they include no assertions
about the constancy or continuity of behavior when the number of available
responses 1s changed. However, to derive (22) we need add only the postulate
that the coﬁditioning parametexr € of response Ai for every i is
independent of what subset of the alternatives X 1is available. Granted
this additional assumption about conditioning, derivation of Luce's axiom is

a simple matter, for




- 27 -

Zl/o3
. S
Zl/p‘j
X .

Py (A)

2 e, 2 /e,

_ A B
2_Yos 2 1/e,
B X

= £, (A)p,(B)

Using his choice axiom Luce proves the existence of a ratio scale v(j)

(14, pp. 20-28) with the property that

<
P ¥
Ch
g

p,(A) =
X (1)

™M =M

The relation of this additive ratio scale to the utility function u

defined by (18) is simply

v(a) = keu(A)

2

‘ where k 1is a positive real number.
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