NOTE ON COMPUTING ALL OPTIMAL SOLUTIONS OF A
DUAL LINEAR PROGRAMMING PROBLEM

BY

PATRICK SUPPES

TECHNICAL REPORT NO. 2

NOVEMBER 15, 1953

PREPARED UNDER CONTRACT Nonr 225(17)
(ER 171-034)

OFFICE OF NAVAL RESEARCH

APPLIED MATHEMATICS AND STATISTICS LABORATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
In certain applications of linear programming it may be desired to find the set of all optimal solutions to the dual problem. The instructions given in Charnes, Cooper and Henderson [1] are at best vague. Using the notation of [1] the purpose of this note is to state an explicit algorithm. We begin with two simple lemmas.

Lemma 1. In every tableau for \(l = 1, \ldots, m \) and \(j = 1, \ldots, n \)

\[
x'_{l,j} = \sum_{i=1}^{m} x_{l,n+1} A_{i,j}
\]

Proof: Trivial for the initial tableau. Assume then that it holds for the \(n \)th tableau. For \(l \neq k \) and \(j = 1, \ldots, m+n \)

\[
x'_{l,j} = x'_{l,j} - \frac{x_{l,j}}{x_{l,k}} x'_{l,k}
\]

Hence to show that

\[
x'_{l,j} = \sum_{i=1}^{m} x'_{l,n+1} A_{i,j} \quad j = 1, \ldots, n
\]

we need to show that

\[1/\] My own interest stems from applying linear programming methods to problems of psychological scaling. This research was supported by the Office of Naval Research under Contract NR 171-034, Group Psychology Branch.
\[
\frac{x_{rj}}{x_{rk}} x_{j,k} = \sum_{i=1}^{m} \frac{x_{r,n+i}}{x_{rk}} x_{j,k} A_{ij},
\]

that is, that

\[
x_{rj} = \sum_{i=1}^{m} x_{r,n+i} A_{ij},
\]

but this follows from our inductive hypothesis.

For \(j = k \)

\[
x_{k,j} = \frac{x_{rj}}{x_{rk}} \quad j = 1, \ldots, m+n,
\]

and the argument is exactly similar.

Lemma 2. In every tableau for \(j = 1, \ldots, n \)

\[
z_j = \sum_{i=1}^{m} z_{n+i} A_{ij}.
\]

Proof: Trivial for initial tableau. Assume that it holds for \(n \)th tableau. Now

\[
z_j = z_j - \frac{x_{rj}}{x_{rk}} (z_k - c_k).
\]

Hence by virtue of our inductive hypothesis, after making the obvious cancellation of terms, we need only to show that

\[
x_{rj} = \sum_{i=1}^{m} x_{r,n+i} A_{ij},
\]

but this follows at once from Lemma 1.
We next explicitly define distinct optimal solutions of the dual problem in terms of the simplex tableaus.

Definition. Let T and T' be two optimal tableaus. Then T and T' yield distinct optimal solutions of the dual problem if, and only if, there is a j with $n < j < n+m$ such that

$$z_j
eq z'_j.$$

We now state the theorem which provides an algorithm for finding such distinct solutions or deciding there are none. I say that tableau T' is immediately derived from tableau T when T' is computed directly from T according to the procedure given in [1].

Theorem. Let T be an optimal tableau. In order that there exist an optimal tableau T' immediately derivable from T and yielding a distinct optimal solution to the dual problem it is necessary and sufficient that there is a row r and a column k in T such that

1. $\lambda_k = 0$
2. $x_{rk}
eq 0$
3. $z_k - c_k > 0$
4. For every column j in T

$$z_j - c_j \geq \frac{x_{rj}}{x_{rk}} (z_k - c_k).$$

**Proof: ** (Necessity). It is convenient to consider the conditions in reverse order. If there is a j such that
then
\[
\frac{x_j}{x_{rk}} (z_k - c_k) > z_j - c_j,
\]
then
\[
z'_j - c'_j < 0,
\]
and \(T' \) is not an optimal tableau.

By hypothesis on \(T \), \(z_k - c_k > 0 \). If \(z_k - c_k = 0 \) then for all columns \(j \) in \(T \)
\[
z'_j - c'_j = z_j - c_j
\]
and \(T' \) does not yield a distinct solution.

If \(x_{rk} = 0 \) then \(T' \) is not well-defined, since the computation for \(T' \)
will involve division by zero.

If \(x_{rk} \neq 0 \), since \(x_{rk} \neq 0 \) and \(z_k - c_k > 0 \), we must have
\[
z'_0 \neq z_0
\]
but then \(T \) and \(T' \) cannot both be optimal, for \(z_0 \) is the optimal value of
the linear functional.

[Sufficiency]. Suppose the conditions (1)-(4) are satisfied and there is
no \(i \) with \(1 \leq i \leq m \) such that
\[
z_{n+i} \neq z'_{n+i}.
\]
Now from our hypothesis we know there is a \(k \) such that
\[
z'_k \neq z_k
\]
for
\[
z_k - c_k > 0
\]
and always

\[z'_{k} - c'_{k} = 0. \]

On our supposition \(k \) is not the number of a slack vector, that is, \(1 \leq k \leq n \). Hence by virtue of Lemma 2 we know that

\[\sum_{i=1}^{m} z_{n+i} A_{ik} / \neq \sum_{i=1}^{m} z'_{n+i} A'_{ik}, \]

but this inequality can only hold if for some \(i \) with \(1 \leq i \leq m \)

\[z_{n+i} / \neq z'_{n+i}, \]

which is contrary to our supposition. This completes the proof of the theorem.

Given the theorem, all optimal solutions to the dual problem may be found by the Tarry method outlined on pp. 69-70 of [1]. It is perhaps useful to note that when \(z_{k} - c_{k} = 0 \) we may bring the vector \(k \) into the basis to find a new solution to the original problem but as condition (3) of the theorem shows, this tableau cannot yield a new solution to the dual problem. The remark on p. 21 of [1] that to obtain all optimal solutions we need only consider the case of \(z_{k} - c_{k} = 0 \) and the case of \(\lambda_{i} = 0 \) associated with \(x_{i,j} > 0 \) is misleading, for as the theorem given here indicates we may have \(x_{i,j} < 0 \) and obtain a new solution to the dual problem. My own experience has been that this is more common than having \(x_{i,j} > 0 \).

Stanford University
References

<table>
<thead>
<tr>
<th>Address</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research Mathematics Division, Code 430</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research Logistics Branch, Code 436</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Operations Research Office</td>
<td>1</td>
</tr>
<tr>
<td>7100 Connecticut Avenue</td>
<td></td>
</tr>
<tr>
<td>Chevy Chase, Maryland</td>
<td></td>
</tr>
<tr>
<td>Attn: The Library</td>
<td></td>
</tr>
<tr>
<td>The Rand Corporation</td>
<td>1</td>
</tr>
<tr>
<td>1900 Main Street</td>
<td></td>
</tr>
<tr>
<td>Santa Monica, California</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. John Kennedy</td>
<td></td>
</tr>
<tr>
<td>The Logistics Research Project</td>
<td>1</td>
</tr>
<tr>
<td>The George Washington Univ.</td>
<td></td>
</tr>
<tr>
<td>707 - 22nd Street, N. W.</td>
<td></td>
</tr>
<tr>
<td>Washington 7, D. C.</td>
<td></td>
</tr>
<tr>
<td>Dr. R. F. Bales</td>
<td>1</td>
</tr>
<tr>
<td>Department of Social Relations</td>
<td></td>
</tr>
<tr>
<td>Harvard University</td>
<td></td>
</tr>
<tr>
<td>Cambridge, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Dr. Alex Bavelas</td>
<td>1</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Cambridge, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Dr. Donald Campbell</td>
<td>1</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td></td>
</tr>
<tr>
<td>Northwestern University</td>
<td></td>
</tr>
<tr>
<td>Evanston, Illinois</td>
<td></td>
</tr>
<tr>
<td>Dr. Clyde H. Coombs</td>
<td>1</td>
</tr>
<tr>
<td>Bureau of Psychological Services</td>
<td></td>
</tr>
<tr>
<td>University of Michigan</td>
<td></td>
</tr>
<tr>
<td>1027 E. Huron Street</td>
<td></td>
</tr>
<tr>
<td>Ann Arbor, Michigan</td>
<td></td>
</tr>
</tbody>
</table>

Office of Naval Research Branch Office

Office of Naval Research
Group Psychology Branch
Code 452
Department of the Navy
Washington 25, D. C.

Office of Naval Research Branch Office
346 Broadway
New York 13, New York

Office of Naval Research Branch Office
1000 Geary Street
San Francisco 9, Calif.

Office of Naval Research Branch Office
1030 Green Street
Pasadena 1, California

Office of Naval Research Branch Office
Tenth Floor
The John Crerar Library Building
26 East Randolph Street
Chicago 1, Illinois

Office of Technical Services Department of Commerce
Washington 25, D. C.

Commanding Officer
Office of Naval Research Branch Office
Navy #100, Fleet Post Office
New York, New York

Director, Naval Research Laboratory
Attn: Technical Information Officer
Washington 25, D. C.

ASTIA Documents Service Center
Knott Building
Dayton 2, Ohio

Office of Naval Research
Mathematics Division, Code 430
Department of the Navy
Washington 25, D. C.

Office of Naval Research
Logistics Branch, Code 436
Department of the Navy
Washington 25, D. C.

Operations Research Office
7100 Connecticut Avenue
Chevy Chase, Maryland
Attn: The Library

The Rand Corporation
1900 Main Street
Santa Monica, California
Attn: Dr. John Kennedy

The Logistics Research Project
The George Washington Univ.
707 - 22nd Street, N. W.
Washington 7, D. C.

Dr. R. F. Bales
Department of Social Relations
Harvard University
Cambridge, Massachusetts

Dr. Alex Bavelas
Massachusetts Institute of Technology
Cambridge, Massachusetts

Dr. Donald Campbell
Department of Psychology
Northwestern University
Evanston, Illinois

Dr. Clyde H. Coombs
Bureau of Psychological Services
University of Michigan
1027 E. Huron Street
Ann Arbor, Michigan

The above list represents a distribution of technical reports and related correspondence to various departments and organizations within the United States, including naval research, logistics, and other related fields. Each entry includes the name of the department, branch, or office, the specific location, and the number of copies requested. This list is part of a larger document management system used by the Office of Naval Research to ensure that relevant technical information is disseminated efficiently.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
<th>Column 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Mort Deutsch</td>
<td>Graduate School of Arts & Sciences, New York University, Washington Square, New York</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Francis J. DiVesta</td>
<td>Department of Psychology, Syracuse University, 123 College Place, Syracuse, New York</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Leon Festinger</td>
<td>Department of Psychology, Stanford University</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Murray Gerstenhaber</td>
<td>University of Pennsylvania, Philadelphia, Pennsylvania</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Leo A. Goodman</td>
<td>Statistical Research Center, University of Chicago, Chicago 37, Illinois</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Harry Nelson</td>
<td>Department of Psychology, University of Texas, Austin, Texas</td>
<td>1</td>
</tr>
<tr>
<td>Dr. William H. Kappauf</td>
<td>Department of Psychology, University of Illinois, Urbana, Illinois</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Leo Katz</td>
<td>Department of Mathematics, Michigan State College, East Lansing, Michigan</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Duncan Luce</td>
<td>Bureau of Applied Social Research, Columbia University, New York 27, New York</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Nathan Macoby</td>
<td>Boston University Graduate School, Boston 15, Massachusetts</td>
<td>1</td>
</tr>
<tr>
<td>Dr. O. K. Moore</td>
<td>Department of Sociology, Yale Station, New Haven, Conn.</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Theodore M. Newcomb</td>
<td>Department of Psychology, University of Michigan, Ann Arbor, Michigan</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Helen Peak</td>
<td>Department of Psychology, University of Michigan, Ann Arbor, Michigan</td>
<td>1</td>
</tr>
<tr>
<td>Dr. George Saslow</td>
<td>Department of Neuropsychiatry, Washington University, 640 South Kingshighway, St. Louis, Missouri</td>
<td>1</td>
</tr>
<tr>
<td>Dr. C. P. Seitz</td>
<td>Special Devices Center, Office of Naval Research, Sands Point, Port Washington, Long Island, New York</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Marvin Shaw</td>
<td>The Johns Hopkins University, Mergenthaler Hall, Baltimore, Maryland</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Herbert Solomon</td>
<td>Teachers College, Columbia University, New York, New York</td>
<td>1</td>
</tr>
<tr>
<td>Dr. F. F. Stephan</td>
<td>Princeton University, Princeton, New Jersey</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Dewey B. Stuit</td>
<td>100 Schaeffer Hall, State University of Iowa, Iowa City, Iowa</td>
<td>1</td>
</tr>
</tbody>
</table>
Dr. Robert L. Thorndike
Teachers College
Columbia University
New York, New York 1

Dr. E. Paul Torrance
Survival Research Field Unit
Crew Research Laboratory
AF & TRC
Stead Air Force Base
Reno, Nevada 1

Dr. John T. Wilson
National Science Foundation
1520 H Street, N. W.
Washington 25, D. C. 1

Professor K. J. Arrow
Department of Economics
Stanford University
Stanford, California 1

Professor M. Flood
Department of Industrial Engineering
Columbia University
New York 27, New York 1

Professor Jacob Marschak
Behavioral Science Center
Stanford University
Stanford, California 1

Professor Oskar Morgenstern
Department of Economics & Social Institutions
Princeton University
Princeton, New Jersey 1

Professor Nicholas Rashevsky
University of Chicago
Chicago 37, Illinois 1

Professor David Rosenblatt
American University
Washington 6, D. C. 1

Professor Alan J. Rowe
Management Sciences Research Project
University of California
Los Angeles 24, California 1

Professor L. J. Savage
Committee on Statistics
University of Chicago
Chicago, Illinois 1

Professor Herbert Simon
Carnegie Institute of Technology
Schenley Park
Pittsburgh, Pennsylvania 1

Professor R. M. Thrall
University of Michigan
Engineering Research Institute
Ann Arbor, Michigan 1

Professor A. W. Tucker
Department of Mathematics
Princeton University, Fine Hall
Princeton, New Jersey 1

Professor J. Wolfowitz
Department of Mathematics
Cornell University
Ithaca, New York 1

Additional copies for project leader and assistants and reserve for future requirements 25