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CHAINS OF INFINITE ORDER AND THEIR

APPLICATION TO LEARNING THEORY:!

by

John Lamperti and Patrick Suppes

1. Introduction.

The purpose of this paper is to study the asymptotic behavior of a large

class of stochastic processes which have been used as models of learning

experiments. We will do this by applying a theory of chains of infinite order,

or "cha'fnes a liaisons compl~tes." Namely, we shall employ certain limit

theorems for stochastic processes whose transition probabilities depend on the

entire past history of the process, but only slightly on the remote past.

Such theorems were given by Doeblin and Fortet [3] in a form close to that we

employ; however, in order to accommodate certain cases of learning models we

found it necessary to relax somewhat their hypotheses. A self-contained

discussion of these and some additional results is the content of Section 2.

The processes which we shall study with these tools are called "linear

learning models." From a psychological standpoint these models are very simple.

A subject is presented a series of trials, and on each trial he makes a

response, which consists of a choice from a finite set of possible actions.

This response is followed by a reinforcement (again one of a finite number).

The assumption of the model is that the subject's response probabilities on

the next trial are linear functions of the probabilities on the present trial,

:; This research was supported by the Group Psychology and Statistics Branches

of the Office of Naval Research under contracts with Stanford University.
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where the form of the functions depends upon which reinforcement has occurred.

Many results about such models may be found in Bush and Mosteller [2],Estes [4],

and Estes and Suppes [6]. We will also study here models constructed along

similar lines for experiments involving two or more subjects and a type of

interaction between them [6, Section 9] and Atkinson and Suppes [1]. Precise

definitions of these processes are given below in Section 3.

The references mentioned above do not, except in very special cases,

give a thorough treatment of asymptotic properties. We shall prove that

under general conditions linear learning models exhibit "ergodic" behavior;

that is, that after much time has passed these processes become approximately

stationary and the influence of the initial distributions goes to zero. This

is not the case for all models which have been used in experimental work, but

it seems as if ergodic behavior can be proved by our method in almost all the

cases in which one might expect it. Our theorems to this effect, their proofs

and some corollaries are given in Section 4.

The major work so far on limiting behavior of learning models is

Karlin [8], who obtains detailed limit theorems for certain classes of models.

However, the results and even the techniques of Karlin's paper do not apply

to many cases of interest. His starting point is a representation of the

linear model as a Markov process whose states are the response probabilities.

Two typical situations when such a representation is impractical arise

(i) when the probabilities with which the reinforcement is selected depend

on two or more previous responses, and (ii) in the many-person situations

mentioned above. Both these situations can (and will) be studied using
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infinite order chains, and ergodic behavior established under mild restric­

tions. On the other hand, Karlin's work treats interesting non-ergodic cases

outside the scope of our approach. For example, consider a T-maze experiment

in which the subject (a rat, say) is reinforced (rewarded) on each trial

regardless of whether he goes left or right. In the appropriate linear model,

the probability of a left turn eventually is either nearly 0 or nearly 1,

and which it is depends upon the rat's initial response probabilities. The

mOdel of this experiment has been thoroughly studied in [8, Section 2], and

these results have been generalized by Kennedy [9].

In conclusion we comment that both more detailed results and other

applications seem possible using the ideas of "infinite order chains." We

hope to contribute further to this development in the future.

2. Chains of Infinite Order.

In this section we present a theory of non-Markov stochastic processes

where the transition probabilities are influenced only slightly by the remote

past. The original convergence theorems for this type of process are due to

Doeblin and Fortet [3]; they are given here ina generalized form (Theorems

2.1 and 2.2). The weaker hypotheses make the proof of Lemma 2.1 more

complicated than it is in [3], but the other proofs are not much affected.

T .. E. Harris has also studied these chains; we shall not use his results but

remark that his paper [7] gives additional references and background on the

subject. Finally we point out that the restriction to a finite number of
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states is not essential, and the theorems can be extended to the denumerable

case without much change of methods.

Let I consist of the integers from 1 to N (to represent the states

of the chain); we shall use the notation x for a finite sequence i o ' i l , ...

of integers from I . The subscript "m" on x merely adds the specifica­
m

tion that the sequence has m terms; the "sum" x + Xl
m

will be the combined

sequence i ,
o

• • 1 • I
• ,oJ 1 1,1,1

1
...

m- 0
The starting point for the theory

will be a set of functions Pi (x) defined for all i € I and all sequences x

(including the sequence ~ of length zero) and having the properties

(2.1) L P.(x) = 1
i l

The function Pi(x) will be interpreted as the conditional probability that

a path function of the random process will go next to state i, having just

occupied state i ,
o

previously i
l

, etc. With this interpretation in mind

we define inductively the "higher transition probabilities":

(2.2 ) p~n) (x) = L p. (x) p~n-l)(j + x) ,
l jEI J l

where of cou:rse (1)
P. (x) = P.(x) ,

l l
the given function. It is easy to see

/";

that these higher probabilities also satisfy condition (2.1). The functions

p~n) (x) are the analogues of the terms of the matrix pn for a Markov chain
l

with transition matrix P; the theo:rems we shall give generalize the

convergence properties of the .matrices pn
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We shall first impose a positivity condition on the transition

probabilities; specifically we assume that for some state jo' some

positive integer no' and some 5 > 0 ,

(2.3 )
(n )

p. 0 (x) > 5
J o

for every x

-We also need to make precise the "slight" dependence of these probabilities

on the remote past; indeed, this is the crux of the whole theory. Define

(2.4 ) E ~ sup 1 p. (x+x,) - P. (x+ x")
ill l l

where the sup is taken over all states i, all sequences x' and x"

and all sequences x which contain the state jo at least m times. We

shall use the postulate

(In [ 3], "m is defined in the same way except that the sup is taken over

all x of length at least m Since this results in larger E 's
m '

and

since it is also assumed there that ~ "m < 00 , our hypotheses are

strictly weaker.) Throughout this section, (2.3) and (2.5) will be assumed.

Lemma 2.1.

(2.6 ) lim
m -. 00
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sup is the same as in (2.4) (i.e. x contains atleast m

times); the convergence is uniform in n

Proof. We define quantities (k) by using (k) instead of Pi inE Pim

(2.4) ; then of course
(1)

E and the conclusion of the lemma isE= ,m m

equivalent to (k) ..... 0 uniformly in k as m ..... oo NowEm

Ip~k) (x+x' ) _ p~k) (x+x") . I = IL {p,ck-l) (j+x+x')P. (x+x' )_p~k-l)(j+x+x")P. (x+x")) I
1 1 .1 J 1 J

J

<~ P. (x+x' ) I·p~k-l) (j+x+x' ) _ p~k-l) (j+x+x") I
-L',-J 1 1

J

+ L Ip.(x+x')-P.(x+x") Ip~k-l)(j+x+x")
j J J 1

Suppose that x contains J. m times.
o

Then the second term of the above

estimate is less than NE
m

The absolute value in the first term is less

than (k-l) b t 'f ' . th' b' d t (k-l) T k'Em ,u 1 J = J o lS can e lmprove 0 Em+l . a lng

account of (2.3) and assuming that n = 1, we obtain the estimate
o

(2·7)

(In case n > 1 ,
o

the same idea can be carried out; the details are more

cumbersome and will not be given.)

Now (2.7) can be iterated to obtain an estimate of

E After some computation the result is
m

(k)
E
m

in terms of
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k~2 "
NE 15Li(1-5)l

m+ "0l=

+ ." +
k-f,-l (i+f,-l)

N E "5f, L i
m+.., " 0l=

If the series are extended to infinity, the ine~uality remains true; calling

these (infinite) series Ao ' Al , .•• , ~-l we have

) k-l
E(k < N L ~ . 5i A

l
"

m - "0 m+ll=

But it can be shown without much difficulty that

Since -1 = ,,-(1,+1)Ao = 5 we obtain Af, U , and hence

(2.8 )
k-l

E> "" 0 m+ll=

Recalling hypothesis (2.5), the uniform convergence of

(2.8).

Lemma 2.2.

lim I p~n)(x') _ p~n)(xn) I '" 0
l l

and the convergence is uniform in x I and XII

follows from
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Proof. For clarity we shall use probabilistic arguments, although a

purely analytic rephrasing is not hard. Consider two stochastic processes

operating independently with transition probabilities Pi(X) , one with the

se<J.uence x' for its past history up to time 0 and the other with x".

In view of Lemma 2.1, for any € > 0 there is an m such that if the two

Processes have occupied the same states for a period which includes J' ato

least m times and ends sometime before time n, then their probabilities

of being in state i at time n differ by at most €/2. But it follows

from condition (2.3) that with probability one, there will sometime be a

can take n large enough so that this simultaneous "run" of state

period of length m during which both processes remain in state

occur before time n with probability not less than 1 - €/2

j . -We
o

jo will

-For this and

all greater values of n, therefore, the two processes have probabilities

of occupying state i at time n which differ by at most €, and this

proves (2.9). -It is also easy to see from (2.3) and Lemma 2.1 that n can

be chosen uniformly in x' and x"

-With this much preparation we shall now prove the first theorem:

Theorem 2.1. The <J.uantities

(2.10) lim
n '-7 co

exist, are independent of

uniformin x

x , and satiE;fy ~ n. = 1 ; the convergence is
I l
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Proof. Applying (2.2) repeatedly, we have

p~n+m)(x) =~ p. (x)P. (i l+x)
~ L-- 1 l m-

x m-l m~2
m

(.. ) (n)( )p. II + ... + l l+x p. x +x ,
1 . m- 1. ill

o

where x = i ,il ,. 6. ,i 1
ill 0 m-

Therefore

p. (i
l

+ ... + i l+x) I p~n)(x +x)_p~n)(x) I
1. m- lID 1

o

and by Lemma 2.2, for any € there is an n such that each term within

absolute value signs on the right is less than € ·Since the weights

Pi (il + ..• + i
m

_
l

+ x) sum to one, we have
o

and so p~n)(x) has a (uniform in x) limit
l

number of states,

11.
l

Since there are a finite

~ 11. = L lim
. l .
1 1 n,........)oo

and this completes the proof.

p~n)(x) = lim
l

Next we shall define joint probabilities.

let

If x is i ,il,···,i l'
ill 0 m-

P. (x')P. (i l+x') ...P. (il+···+i l+x)
1 1 m- lID-
m-l m-2 0
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This is, of course, the probability of executing the sequence of states x
m

starting with past history x' . -We can define also the higher joint

probabilities:

(2.12 )

Analogues of Lemmas 2.1 and 2.2 can be proved for these quantities by the

same arguments used already; in this way it is not difficult to prove

Theorem 2.2. The quantities

(2.13 ) J(
x

m

exist, are independent of x' , and satisfy L
i ... i 1o m-

= 1 the

convergence is uniform in Xl •

Remark. These two theorems imply the existence of a stationary

andI ,infinite sequences of members of

can be used to define a probability measure onJ(
x

m
the space ofthe I-lcylinder sets fl in

stochastic process with the Pi(x) for transition probabilities. The idea

is that the quantities

this measure can then be extended. This stationary process need not concern

us further here.

Finally we will prove convergence theorems for certain "moments" which

are useful in studying experimental data. The idea is that if we have a
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stochastic process with the functions Pi(x) for transition probabilities,

the probability p. (x )
. J.'m

that the state at time ill is i given the past

history x is itself a random variable, and so it makes sense to study
m

E(p~ (x )). More formally, define
l'm

(2.14 ) ex~(m,x) = L p~(x +x)
1. • • 1. ill

1. J.~"l. 1o m-

p(x)x
m

where Px (x)
m

is defined by (2.9). Thus 1
ex. (m,x)

1
is the same as

Theorem 2.1 states that lim
ill ,-7 CD

1ex. (m,x) = n. exists. We shall now prove
1 1

Theorem 2.3. The quantities

(2.15) lim
m-->ffi

exist for every positive integer V ; convergence is uniform in

limit is independent of x.

x and the

Proof.

sequence .:

We use a simple estimate to show that ex~(m,x)
1

is a Cauchy

ex~(m+k+h, x) - ex~(m+k, x)
1 1
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+ ~ I p~(x k+x) - p~(x +x)·1 p (x)
l m+ l m xm+k

+ I p~(x +x)p (x)
l m xm+k+h

- ~.p~(X +x)p (x)
l m x

xm+k .m+k

If m is chosen large enough, the first two terms will be arbitrarily small;

this involves nothing more than the conditions (resulting from (2.3) and (2.5))

that ~ .~ 0 ,
m

and that a long se~uence x contains j many times with
o

high probability. The last term may be rewritten by carrying out t.he

summation over all the indices except those in x . this yields
m '

which is small for all h (and for all x) if k is large enough, by

Theorem 2.2" ·Thus if n =m + k ,

h, and this proves that the limit

I a~(n+h,x) - a~(n,x) I is small for all
l l

(2.15) must exist; the limit is uniform in

x since a~(m,x) is uniformly Cauchy. Another estimate along .much the same
l

line can be .made to show that for any E > 0 ,

I a~ (m+k,x) - a~ (m+k,x' ) < E
l l

provided m and k are large. Since the limit of a~ (m+k,x)
l

exists as

m+k-. 00 , we can conclude that the limit is the same for all x .

It is also desirab.leto consider some additional "cross" moments

involving Pi(xm) for several states at once; accordingly we define
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The following theorem is then a generalization of Theorem 2.3, which treats

the case k = 1 :

Theorem 2.4. The quantities

(2.17) lim
ill ~.oo

exist uniformly in x for all non-negative integers and all

and the limits are independent of x

The argument used in proving Theorem 2.3 works in this case also with

only trivial changes, and need not be repeated. Finally we remark that

moments involving several values of n can be considered, and it can be

shown that their limits exist also. This provides a generalization of

Theore.m 2.2.

3. Definition of Linear Learning Models.

The models we consider apply to an experimental situation which consists

of a sequence of trials. On each trial the subject of the experiment makes a

response, ~hich is followed by a reinforcing event. Thus an experiment may

be represented by a sequence (~1'§.1'~'~2' .•. ~n'~n' ... ) of random

variables, wher~ the choice of letters follows conventions established in the
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literature: the value of the random variable A is a number j repre­
-n

senting the actual response on trial n, and the value of E is a-n

number k representing the reinforcing.event on trial n. The relevant

data on each trial may then be represented by an ordered pair (j,k) of

integers with 1 ~ j .~ r, and 0 ~ k ~ t, that is, we envisage in

general r responses and t + 1 reinf'orcing events. Any sequence of these

pairs of integers is a sequence of values of the random variables and thus

represents a possible experimental outcome. The general aim of the theory

is to predict the probability distribution of the response random variable

when a particular distribution, or class of distributions, is imposed on the

reinforcement random variable.

In dealing with the general linear model with r responses and t +.1

reinforcing events we are following the formulation in Chapter 1 of Bush and

Mosteller [2], although our notation is somewhat different, being closer to

Estes [4] and Estes and Suppes [6] .

.The theory is formulated for the probability of a response on trial n+ 1

given the entire preceding sequence of responses and reinforcements. For this

preceding sequence we use the notation x
n

Thus

x = (k ,j ,k l,j 1"" ,kl,jl)n n nn- n-

(It is convenient to write these sequences in this order, but note that the

numbering here is from past to present, not the reverse as in Section 2.)
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Our single axiom is the following linearity assumption:

AxiomL, If E = k and p(x ) > 0 then
n n

where A.' k < 1
J -

We obtain the linear model studied intensively in [6] by setting:

/8k = e for kf 0

i
8k 0 0; = for k =

(3.2) "\
\ Ajj = 1

A
jk

=0

,
\..,. t = I'

for j f k

A linear model satisfying (3.2) we shall term an Estes Model, and for such

models (3.1) may be replaced by the simpler condition:

(1 - e)p(A = j Ixn _l ) + e if E = jn ---n

(3 ·3) P(:!'on+l = j Ix ) = (l-e)p(A = j I X n _
l

) if E = k,kfO,kfjn -n -n

P(:!'on = j I xn _l ) if E =0-n

Axiom L satisfies the combining classes condition of Bush and Mosteller .

.Upon replacing e by 1 - a in (3.1) essentially their general formulation

of the linear model is obtained, although they do not explicitly indicate

dependence on the se~uence x
n
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We also define here certain moments which are of experimental interest

and whose asymptotic properties we investigate subsequently. The moments

C/~ of p. (x) are:
J ,n J ,n

(3.4 )

And if the appropriate limits exist, we define

lim
n....,oc

v
C/.J,n

The moments (3.4) are formed in an unsymmetrical way; however, they

enter in a natural way in the expression of quantities which are easily

observed experimentally -- for instance, the joint probability

P(~n+l = j'~n = j). (For other examples, see (6].)

We are also interested in studying extensions of the linear model to

multiperson situations. We may suppose that we have s subjects ina

situation such that the probability of a particular reinforcing event for

anyone subject will depend in general on preceding responses and reinforce-

ments of the other s - 1 subjects as well as on his own prior responses

and reinforcements. The data on each trial may then be represented by an

of integers with l<j. <r.,
- J. - 1

o < k. < t. , for i = 1 , ..• , s, and any sequence of such tuples
- 1 - 1

represents a possible experimental outcome. Let and be the

response and reinforcement random variables for the i th subject on trial n .

We may then generalize Axiom L to:
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if E(i) = k and p(x) > 0 then
--n - n --

(3.6) P(A(i) = " Ix )
-n+l J n

= (l_g(i))P(A(i) = J"I x ) + g(i) )...(i)
k -n n-l k jk'

where o<g(i)
- k '

, (i)
''"jk < 1 and ~ )...~i) = 1

- - C-;- Jk
J

Experimental tests of Axiom M for two-person situations are reported

in Estes [5] and in Atkinson and Suppes [1]. Let
(i)xn _

l
be just the se'luence

of first n - 1 responses and reinforcements of subject i. It is an easy

conse'luence of Axiom M that

P(A(i) = "!x(i)) = P(A(i) = "Ix )
-n J n-l . n J n-l '

and it is in terms of x(i
l
) that we define moments c/ i ! exactly

n- v,J,n

analogous to (3.4). -We shall also be interested in the jOint moments

= L pVC~~l)
x

n
_
l

and their asymptotes yV = jl, •.. ,js if they exist. To work with these

latter moments in terms of Axiom M we need the additional reasonable

assumption that when all the n -1 preceding responses and reinforcements

are given, the s responses on trial n are statistically independent:

P(A(l)= jl' ..• ,A(s)= j I x 1)
n -n s n-

s

= n P(A(i) = "I )J
i

x
n

_
li=l n
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The experimental restriction implied by Axiom I has been satisfied in the

multiperson studies employing the linear model.

4. Asymptotic Theorems for Learning Models.

After dealing with some matters of notation, we state general theorems

on the existence of asymptotic moments. The hypotheses of the theorems give

some broad conditions which guarantee ergodic behavior. We begin with the

one-person models satisfying Axiom L.

In this section it will be convenient to use some of the notation of

Section 2. Thus we may write P(A = j I x +x' )-n m

-We reserve the subscript m

to indicate we are interested in the last m terms of

xm+x' is just the combined sequence xn_l

for counting back m trials from a given trial n .

The "sum ll

To clarify the general theorems it is desirable to define in an exact

way the notion of the conditional probability of a reinforcing event depending

on only a finite number m of past trial outcomes and independent of the

trial number.

Definition. A linear model has a reinforcement schedule with past

dependence of length m if, and only if, for all k, n and n' with n, n' >m

and all x
m

' x' and XII

(4.1) P(E =k Ix +X') = P(E ,=k I x +x H
)-n m -n m
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x includes the response A. which precedes
m J,n

E on trial n.) It is to be noticed that the use of n on one side
k,n

and n' on the other side of (4.1) yields independence of trial number.

The term reinforcement schedule has been used because of its fre~uent

occurrence with approximately this meaning in the experimental literature.

·For theconditfonal probabilities of (4.1) we shall use the notation

(4.2 ) 1(. = P(E = k Ix +x)
K X -n ill, m

We may now state the first general theorem •

.Theorem 4.1. Let 1-- be ~ linear model such that

(i) c';f has ~ reinforcement schedule with past dependence of length m*,

(ii ) there is an integer k* such that

(b) there is a----- - 0* and an m
o

such that for all sequences x

and all integers n

P(E = k* Ix ) > 0* > 0-n+m n
o

Then the asymptotic moments a~
J

of ~ all exist and~ independent of the

initial distribution of responses.
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Proof: The central task is to characterize de as a chain of infinite

order and show that satisfaction of the hypotheses of the theorem implies

satisfaction of conditions (2.3) and (2.5). With this accomplished the

asymptotic theorems of Section 2 may be applied to :t It is most convenient

to take as states of the chain the ordered pairs (j,k) , where j is the

response on trial n, say, and k is the reinforcement on the preceding

trial. Consider now the reinforcement k* of the hypothesis of the theorem.

of the infinite order chain, we shall establish (2.3) and (2·5).

j* be a response such that (There is at least one suchLet

since L A.· kjJ
the state j o

=1 ; in the Estes

A.j*k*

model j* = k* .) With the pair (j*,k*)

j*

as

To verify (2.3), we use (ii)b of the hypothesis and the following

eQualities and ineQualities, which hold for all x and n :

P(A -J'* E -k*lx)-n+m +1- '-n+m - n
o 0

Applying.Axiom L, the right-hand side becomes:

= L [(1-9k*)P(A =j* Ix l+x )+9k*A. '*k*]P(E*=k*lx l+x) ,p(x llx)-n+m ill - n J - -n+m ill - n ill - n
Xl 0 0 0 0 0m -o

> 9k*A. '*k* ~ P(E =k* Ix l+x )F(x llx)- J L- --n+m m - n m - n
x 1 0 0 0m -o

> 9k*A.'*k*P(E =k*lx)- J -n+m no

by (ii)b .
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To establish (2.5), consider the following e~ualitiesand ine~ualities:

IpeA , 1 = j, E , =k' Ix+x') - peA " 1= j, E ,,= k I x+x"). -n+ -n -n+ n

= 1t. Ip(A'l=j IE ,=k, x+x') - P(A" l=j IE n=k, x+x") I,
k,Xm* -TIT n -n + n

where means the last m* terms of x , and where the se~uence x

contains at least m occurrences of k*, with m > m*

follows from (i) of the hypothesis, for by virtue of (i)

The e~uality

1t = peE ,=k Ix+x') = peE ,,=klx+x")
l{X -n -n, m*

Applying Axiom L once to the right-hand side of (4.3) we get, ignoring

I peA '+1 = j IE, = k, x+x') - peA " 1 = j IE" =k, x+x") I-n -n -n+.--n

We .do not know that gk F 0 , but as we apply. Axiom L repeatedly, we obtain

the .factor (l-gk*) at least m times, so that

(4.4) Ip(A '+l=j,E ,=k Ix+x') - P(A" l=j, E ,,=k Ix+x") I-n . -n -n + -n

,

where h is the length of x ."J The difference term on the rigntof this

"J If all gk F 0 , the original condition given in [3] would be satisfied;

our weaker condition (2.5) allows inclusion of cases where some of the

gk are 0 (i.e. where there can be trials ~ithout a reinforcement).
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inequality is not more than 1 , so that from (4.4) we obtain the estimate

for m > m*

whence

which is (2.5).

(Jl)

L
m=O

€ < 00 ,
m

"

On the basis of (2.3) and (2.5) we know from Theorem 2.4 that the

asymptotic cross-moments of dC exist and are independent of the initial

distribution of responses. But

and so the moments a~ can be expressed as sums of the cross-moments for
J,n

the infinite order chain which insures the existence of the limiting

.moments (3.5) and that they do not depend upon initial conditions.

There are several remarks to be made about the theorem just proved •

.First, we observe that a simple sufficient (but not necessary) condition

for (ii)b is

The interpretation of (4.5) is that the reinforcing event k* has positive

probability on every trial no matter what sequence x
m

* of responses and
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reinforCements preceded. A number of interesting experimental cases of

the linear model can be described in terms of (4.5), (i) and (ii)a of

Theorem 4.1.

I. Contingent case with lag .v. In the Estes model let

P(E = k IA = j ,x) = 11, • (v), for all x such that P(A = j, x) > 0
--~ ~ ~~

To satisfy (4.5), we need only that for some k, ltjk(v) f 0 for all j

Experimental data for v = 0,1,2 are given in Estes [5].

II.

for all

Double contingent _case. Let P(E = k IA = j, A = j , ,-n _ -n-l

x such that P(A =j, A l=j', x) > 0 .-n -n-

x)= 11, •• , ,"
K,JJ

Then (i) of Theorem (4.1) is immediately satisfied, and for (ii)a and (4.5)

is that although they are simple

we need a k such that

An interesting fact

9k f 0 and for all

about (I) and (II)

j and j', 11, •• , f 0
K,JJ

to test experimentally and their asymptotic response moments exist on the

basis of Theorem 4.1, there is no known constructive method for computing

the actual asymptotes. (The Estes [5] test of (I) excludes non-reinforced

trials which cause the computational difficulties.) It may also be noted

that "the convergence theorems in Karlin [8] do not in general apply to (II),

and apply to (I) only if v = 0 .

On the basis of the proof of Theorem 4.1 we may, by virtue .of Theorem 2.2,

conclude that the asymptotic joint probabilities of successive responses also

exist:



-24-

Corollary 1. If the hypothesis of Theorem 4.1 is satisfied, then for

exists.

the limit as n 400 of peA = j , A 1 = j l' •.. , A = j )- --n+m ill -n+m- m- -n 0

We may regard the quantities peA = j I x 1) ,n n-
for 1::: j ::: r as a

random probability vector with an arbitrary joint distribution F1 on

independent of the initial

trial 1, and distribution F on trial n
n

a consequence of the existence of the moments

response probabilities.

The following corollary is

V
CX

j

Corollary 2. If the hypothesis of Theorem 4.1 is satisfied, then there

is ~ unique asymptotic distribution

distributions Fn converge.

F ,
00

independent of Fl ' to which the

For the multiperson situations characterized by Axioms I and M, we have a

theOrem analogous to Theorem 4.1. For use in the hypothesis of this theorem

we define the notion of reinforcement schedule with past dependence of

length m, exactly as we did in (4.1), namely, we have such a schedule if for

all k, l<i<s, all n and n l with n, n' > m and all x , Xl and x"
m

Theorem 4.2. Let?rL be an s-person linear model such that

(i) ?rL has ~ reinforcement schedule with past dependence of length m* ,
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(ii) there are integers
(i )~.

k , for 1 < i< s , such that

(a)

(b) there is a 5* and an mo such that for all sequences x

and all integers n

Then the asymptotic moments V
I' .(1) .(2) .(s)

J ,J , .•. ,J

independent of the initial distribution of responses.

all exist and are

Proof: The states of the chain are now defined as 2s-tuples

is the response made by thewhere
.(1) .(s) (1)

(J , ••. ,J ,k , •.. ,

i th subject and k(i) is the reinforcement for that subject on the preceding

triaL Using the reinforcements k(i)* of the hypothesis, let j(i)* be

(i) (.(1)* .(s)* (1)*. (s)*)
such that A. j (i )*k(i)* F 0 .We take J , ••• ,J , k , •.• ,k as

the state jo for which we establish (2.3) and (2.5).

To verify (2.3) we proceed exactly as in the proof of Theorem 4.1,

applying now Axioms I and M instead of L, and we obtain that

P(A(l) =.(1)* ••• A(s) =.(s)* E(l) =k(l)* ..• E(s)=k(s)*lx )
-n+m +1 J ,. '-n+m +1 J , -n+m ' '-n+m n

o 0 0 0

s
>TT

i=l
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For (2.5), we first observe that by virtue of (i) of the hypothesis

and Axiom I

_ P(A(l) _ .(1) A(S) _ .(s) E(l)_ k(l) E(S) _ k(S) I + ") I
_n l1+1- J "o··'_n"+l- J '-n"- " .. '-n11 - xx =

s S

11: In P(A(i) =/i) !E(i)=k(i)x+x' )_17P(A(i) =/i) !E(i)=k(i)x+x") I.
(1) (s) . -n'+l -n' , . -n"+l -,n" ,

k , •.. ,k ,xm* l=l l=l

We notice next that the right-hand side is

Continuing this same development, we obtain:

And by the line of reasoning used in the proof of Theorem 4.1, if the sequence

x contains state (j(l): ... ,k(s)*) at least m times the last quantity is

Provided m > m* this inequality yields an estimate of € from which we
m

conclude that (2.5) holds. The existence of the asymptotic moments then

follows from the theory of Section 2 as in the case of Theorem 4.1. Q.E.D.
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A pair of corollaries follow from the theorem just proved which are

exactly like the two given after ,Theorem 4 ,.1 .
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