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CHAINS OF INFINITE ORDER AND THEIR

*
APPLICATION TO LEARNING THEORY—./
by

John Lampexti and Patrick Suppes

1. Introduction.

The purpose of this paper is %o study the asymptotic behavior of a large
class of stochastic processes which have been used as models of learning
experiments. We will do this by spplying a theory of chains of infinite order,
orr”chdgnes % liaisons complétes." Namely, we shall employ certain limit
‘theorems for stochastic processes whose transition probabilities depend on the
-entire past history of the process, but only slightly on the remote past.
‘Such theorems were given by Doeblin and Fortet [3] in a form close to that we
employ; however, in order to accommodate certain cases of learning,models we
found it necessary to relax somewhat their hypotheses. A self-contalned
discussion of these and some zdditional results iz the content of Section 2.

-The processes which we shall study with these tools are called "linear

learning models.” From a psychological standpoint these models are very sim.p}_e°
A subject is presented a series of trials, and on .each trial he makes a

response, which .consists of a choice from a finite set of possible actions.

This response is followed by a reinforcement (again one of a finite number).

" The assumption of the model is that the subject’s response probabilities on

the next trial are linear functions of the provabilities on the present itrisl,

f/ This research was supported by the Group Psychology and Statistics Branches

of the Office of Naval Research under contracts with Stanford University.




where the form of the functions depends upon which reinforcement has occurred.
Many results about such models may be found in Bush and Mosteller [2], Estes [4],
and Estes and Suppes [6]. ‘We will also study here models constructed along
similar lines for experiments involving two or more subjects and a type of
interaction between them [6, Section 9] and Atkinson and Suppes [1]. Precise
definitions of these processes are given below in Section 3.
The references mentioned above do not, except in very speciai cases,
give a thorough treatment of asymptotic properties. ‘Wershall prove that
uvnder general conditions linear learning models exhibit "ergodic” behavior;
that is, that after much time has passed these processes become approximately
stationary and the influence of the initial distributions goes to zerc. This
is not the case for all models which have been used in experimental work, but
it seems as if ergodic behavior can be proved by our method in almost all the
cases in which one might expect it. Our theorems to this effect, their proocfs
and some corollaries are given in Section 4.
‘The major work so far on limiting behavior of learning models is

Karlin [8], who obtains detailed limit theorems for certain classes of models.
However, the results and even the techniques of Kaflin's-paper do not apply
to many cases of interest. His starting point is a representation of the
linear model as a Markov process whose states are the response probabilities.
.TWO typical situatione when such a representation is impractical arise

(1) when the probabilities with which the reinforcement is selected depend
‘on two or more previous responses, and (ii) in the many-person situations

mentioned above. Both these situations can (and will) be studied using




infiinite order chains, and ergodic behavior established under mild restric-
tions. On the other hand, Xarlin's work tfeats interesting non-ergodié cases
outside the scope of our appreach. .For example, conéider a T-maze experiment
in which the subject (a rat, say) is reinforced (rewarded) on each trial
regardless of whether he goes left or.right, In the appropriate linear model,
the probability of a lefi turn eventually is either nearly 0 or nearly 1,
and which it is depends upon the rat's initlal response probabilities. The
model of this experiment has been thoroughly sfudied in {8, Section 2], and
these results have been generalized by Kennedy [9].

In conclusion we comment that both more detailed results and other
applications seem poseible using the ideas of "infinite order chains.” We

hope to contribute further to this development in the fubure.

2. Chains of Infinite Order.

In this section we present a theory of non-Markov stochastic processes
where the transition probabilitiesg are influenced only slightly by the remote
past. The original convergencé theoremsg for this type of process are due to
Doeblin and Fortet . [3]; they are given here in a generalized form (Theorems
2.1 and.2.2). ‘The weaker hypotheses make the proof of lLiemma 2.1 more
complicated than it is in [3], but the other proofs are not much affected..
T, .E. Harris has alsoc studied these chains; we shall not use his results but
remark that his paper [7] gives additional references and background on the

subject. Finally we point out that the restriction to a finite number of




étates 18 not essential, and the theorems can be extended to the denumerable
case without much change of methods.

Lett I consist of the integers from 1 to N (to represent the states
of the chain); we shall use the notation x for a finite sequence io’ il’ enn
of integers from I . The subscript ™m" on X merely adds the specifica-
tion that the sequence has m terms; the "sum" X, + .x' will be the combined

sequence io’ PO S S . The starting point for the theory

02 el to? 1ot
will be a set of functions pi(x) defined for all ieI and all sequences X

(inciuding the seguence © of length zero)} and having the properties
(2.1) p(x)>0, > p(x)=1
i

The function pi(x) will be interpreted as the conditional probability that
a path function of the random process will go next to state i , having just

occupled state io 5 Previously il , ete. -With this interpretation in mind

we define inductively the "higher transition probabilities":

@) 2P )

(2.2) 2™ (x) = > p

Jjel

where of course p§l)(x) = pi(x) s Lhe given function. It is easy to see
that these higher probabilities also satisfy condition (2.1). The functions
p£n)(x) are the analogues of the terms of the matrix P' for a Markov chain

with transition matrix -P ; the theorems we shall give generalize the

. . 1)
convergence properties of the matrices P .




‘We shall first impose a positivity condition on the transition
probabilities; specifically we assume that for some state jo , Ssome

positive integer n_ o, and scme © > 0 ,

()
(2.3) P, (x) > 8 for every x
o

‘We also need Lo make precise the "slight" dependence of these probabilities
on the remote past; indeed, this is the crux of the whole thecry. Define

(2.4) €, = SUp | p, (x+x') - p, (x+x") |

where the sup is taken over all states 1 , all sequences x' and x" ,
and all segquences X which contain the state jo at least m times. We

shall use the postulate

o0
(2.5) ZE:: e, < @
m =0

(In [ 3], ¢, 1s defined in the same way except that the sup is taken over
all x of length at least m . .Since this results in larger ‘gm’s , and
since it is alsc assumed there that E em_< w , our hypotheses are

strictly weaker.) Throughout this section, (2.3) and (2.5) will be assumed.
Lemma 2.1.

(2.6) iim sup | pgn)(x4-x’) - p§n)(x+ =) | =0,
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times); the convergence is uniform in n

Proof. ‘We define quantities .ez(nk) by using pik) instead of Py in

(2.4}; then of course eéll) =e¢,  , and the conclusion of the lemma is

equivalent to elglk) = 0 uniformly in k as m—sco . Now

. (k k " ‘ -1}, . k-1),. " 1

|28 o) = o0 Gore) | =1 32 (00 (gt o, v )25 (gacna o, () |
J

<2 () 2 (e ) - p ) () |
J

+ Z {pj (x+x') - D, (z4x") . pgk—l)(jﬂﬁx”) .
J

‘Buppcse that x  contains ‘jo m times. Then the second term of the above

.estimabte is less than Nem .  The absolute wvalue in the first term is less
(k-1) e . : X (k-1) -
than En , but if J = Js this can he improved to €m+l . Taking

account of (2:3) and assuming that n, = 1 , we obtain the estimate

(k-1)

it (1-8) e(k“l)

(2.7) elik) < Ne + Be A

(In case nO > 1 , the same idea can be carried out; the details are more
cumberscme and will not be given.)
Now (2.7) can be iterated to obtain an estimate of erflk) in terms of

€, - -After some computation the result is
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MO Ek—l (1-8) & w 5 kzgg 1(1-8)t
m - m 4 - e.m+l P Tt
i=0 =0
k-£4-1 [i+4-1 .
£ . : i k-1
+ ot Ne 8 %;; i (L -8)" + ...+ NB S

If the series are extended to infinity; the inequality remains true; calling

these (infinite) series A, A, ..., A, we have

e(k) <N E—l € Si A
m — ) mti i

-But it can be shown without much difficulty that

Ay -h,=(1-8)A

G+, w1’
or A,. =A/8 . Since A = 6*1 we obtain A l= 8#(£+l) and hence
AL p o £ ?
L k-l
(2.8) e(k) <ue* € .
m - g i

Recalling hypothesis (2.5}, the uniform convergence of e;F) follows from

(2.8).
Lemms 2.2.

(2.9) | o) - M) | =0
n — <o

and the convergence is uniform in x' and x" .




Proof. For clarity we shall use probabilistic arguments, although a
purely analytic rephrasing is not hard. Consider two stochastic processes
operating independently with transition probabilities pi(x) s oOne with the
sequence x' for its past history up to time O and the cther with x".

In view of Lemma 2.1, for any ¢ > 0 +there ig an m such that if the two
processes have occupied the same siates for a period which includes Jo at
least m times and ends sometime before time =n , then thelr probabilities
of being in state 1 at time n differ by at most /2 . But it follows
from condition (2:3) that with probability one, there will sometime be =
period of length m during which both processes remain in state jo . We
can take n large enough so that this simultaneous "run” of state jo will
occur before time n with probability not less than 1 - ¢/2 . For this and
all greater vélues of n , therefore, the two processes have probabilities
of occupying state 1 at time n which differ by at most e , and this
proves (2.9). .It is also easy to see from (2:.3) and Lemma 2.1 that n can
be chosen uniformly in x' and x" .

‘With this much preparation we shall now prove the first theorem:

Theorem 2.1. The guantities

(2.10) lim pgn)(x) =
n - o

exist, are independent of x , and satisfy > no= 1 ; the convergence is
T
uniform in x .




Proof. Applying (2.2) repeatedly, we have

- _(ntm) _ ' . . . (n)
Py (x) = > P; (x)pi (1m_l+x) veo Py (114~.g.—+1m_l+x)pi (xmfx) 5
X m-1 m-2 o

Where X =1 ,1,,...,51 . Therefore
m 0’71’ > m-1

ngmm)(X)-Pgn)(X) <37 e (0 ... p; (i +..o+ i J+x) | pgn)(xm+x).-9§n)(x) |
i X m=1 0

and by Lemma 2.2, for any < there is an n such that each term within
absolute value signs on the right is less than ¢ . Since the weights

pim_l(x) Pio(ll LUEERRSE I S x) -sum to one€, we have

1) - pP) < e

(

and so pin)(x) has a (uniform in x) limit m; . Since there are a finite

number of states,

z;: T o= Sg: lim pgn)(x).= lim > pin)(x);= 1,

n— oo n.— @

and this completes the proof.

Next we shall define joint probabilities. .If X is io’il"°"im—1 s

let

3 (80p

' . .
1t )..,pi (11-%.,.+-1 +x)
m m m-1 m-—

(2.11) px(x0= pél%xﬂ= D, _
. o

2( -
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This 1s, of course, the prcbability of executing the sequence of states X

starting with past history x' . -‘We can define also the higher joint
probabilities:
e} {n-1 .
(2.12) pj({ Jx) =3 pj(X'):p}(c Y3+ %)
. m Jel m

Analogues of Lemmas 2.1 and 2.2 can be proved for these quantities by the

same arguments used already; in this way it is not difficult to prove

Theorem 2.2. The quantities

(2.13) lim p}(cn)(x’) =
n— m “m
exist, are independent of x' , and satisfy S T, = 1 ; the
' ' il | m

convergence is uniform in x' .

Remark. These two.theorems jmply the existence of a stationary
_stochastic process with the pi(x) for transition probabilities. The idea
is that the quantities T. can be used to define a probability measure on
the "cylinder sets”" in themspace of infinite sequences of members of 1 , and
this measure can then be extended. This stationary process need not concern
us further here.

Finally we will prove convergence theorems for certain "moments" which

are useful in studying experimentsl data. The idea 1s that if we have a
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stochastic process with the functions Pi(X) for transition probabilities,
the probability pi(:é_{;m) that the state at time m is 1 given the past
history X ig itself a random variable, and so it makes sense Lo study

E(P:(Xm)j . More formally, define

(2.14) af(mx) = S pl(xx) B (x)

i ,.0..,1 m
o’ 2Tl

where p_ (x) is defined by (2.9). Thus ot m,x) is the same as pgm)(x) .
: Xm 1 3 :

‘Theorem 2.1 states that 1lim G%(m,x) = w exists. We shall now prove
m — QO

Theorem.2.3. The guantitles

(2.15) lim o} (m,x) = o)
n — @

exist for every positive integer v 3 convergence ig uniform in x and the

limit is independent of x .

Proof. -We use a simple estimate Lo show that a:(m,x) is a Cauchy

sequence :
|q¥m+k+h,x)—a¥m+k,x)|

_ v = Vv
= | KZ Py (et +k+h(x)-Zpi(xm+k+x)Px k(x)']
lerh o Lot e

vV ‘ L%
< ng:: ‘l Pi(xm+k+hfx) - pi(xmfx)-l Py e h(x)
m+k+h it




v v
+ > Py (%) - Pi(Xm+X)'| e, {x)
Xm+k m+k

v v
+ | > py(xpx)e, (x) - S p (e, (x)]
'xm+k+h mtk+h Xm+k Ttk

If m is chosen large enough, the first two terms will be arbitrarily smals;
this involves nothing more than the conditions (resulting from (2.3) and (2.5))
that %3’4 O , and that a long sequence x contains 30 many btimes with
high probability. -The last term may he rewritten by carrying out the

summation over all the indices except those in X this yields

X X
m m am
m m

’ v k+h k k+h k
| S 2 e ) (e () - 20y | < ST 1 ) () -2 () |
X ' m X
which is small for all h (and for all x) if k is large enough, by
‘Theorem 2.2, Thus if n=a+ k , ‘['Qq(n+h,x) -‘ag(n,x) | is small for all
h > and this proves that the limit (2.15) must exist; the iimit is uniform in

X since az(m,x) is uniformly Cauchy. Another estimate along much the same

line can be made to show that for any e > 0 ,

. Odz(m-l-k,x) - a;(m+k,x,') | < e

provided m and k are large. -Since the limit of Qg(m+k,x) exists as
m+tk — o0 , we can ceoncliude that the 1limit is the same for all x .
It is also desirable to consider some additicnal "cross' moments

involving Pi(xm) for several states at once; accordingly we define
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VoVgee WV v v v
12 k 1 2, k
(2.16) o, 5 5 (m,x) = > b, (meX)P¥ (xm+x) S (Xm+X)PX (x) .
dydprdy x 91 Jdp 'S m

The following theorem is then a generalization of Theorem 2.3, which treats

the cage k = 1 :

Theorem 2.4%. The quantities

Vo oee sV VooeaaV
(2.17) lim @t (m,x) —qt F
m—-oo 917k dy-rdg
exist uniformly in x for all non-negative integers Vi e Vi and all

¢ I , and the limits are independent of x .

. a

.Jk

ol
The argument used in proving Theorem 2.3 works in this case also with

only trivial changes, and need not be repesied. .Finally we remark that

moments involving several values of n can be considered, and it can be

shown that their limits exist also. This provides a generalization of

Theorem 2.2.

3. Definition of Linear Learning Models.

The models we consider apply to an experimental situation which congists
of a sequence of trials. On each trial the subject of the experiment makes a
response, which is followed by a reinforcing event. Thus an experiment may
be repredented by a sequence (51’§1’52’§2’ “ee A E ...} of random

variables, wheré the choice aof letters follows conventions est&blishéd in the
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literature: the value of the random variable én is a number § repre-
senting the actual response or trial n , and the value of En is &
number k representing the reinforcing event on trial n . The relevant
data on each trial may then be represented by an ordered pair (j,k) of
integers with 1< j<r , and 0<kx <+t , that is, we envisage in
general r vregponses and t+ 1 reinforcing events. Any sequence of these
pairs of integers is a sequence of values of the random variables and thus
represents a possiblie experimental cutcome. The general aim of the theory
is to pfedict.the probability distribution of the response random variable
when a particular distribution, or class of distributions, is imposed on the
reinforcement random variable.

In dealing with the general linear model with r responses and ++1
reinforeing events we are following the formulation in Chapter 1 of Bush and
Mosteller [2], although our notation is somewhat different, being closer to
Estes [4] and Estes and Suppes [6].

-The theory is formuiated for the probability of a response on trial n+1
given the entire preceding sequencé of responses and reinforcements.  For this

preceding sequence we use the notation X, - Thus

Xn = (kn)Jn’Kn_l?Jn_lJ . ‘J-liJl) -

(It is convenient to write these sequences in this order, but note that the

nurbering here is from past to present, not the reverse as in Section 2,)
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Our single axiom is the following linearity assumption:
Axiom L. If E =k and P(x_ ) >0 then

(3‘1) 'P(éh+l = Ixn) = (l"gk)P(én =3 lxn—l).+'ek&3k ?

where 0 <€, Kjk <1 and %j Kjk =1 .

‘We obtain the linear model studied intensively in [6] by setting:

;‘"ek =8 for k # o

{ Gk = .0 for k=20
(3-2) TR

Ay =0  for j Ak

k\\ t =r

A linear model satisfying (3.2) we shall term an Estes Modél, .and for such

models (3.1) may be replaced by the simpler condition:

(1-8)P(h, = lxn_l)+e if B o=
(3:3) A, =alx) = ((-e)pa =3lx ) if B = kokpO,khS
P(A, = J |_ x, 1) if E =0 .

Axiom L setisfies the combining classes condition of Bush and Mosteller.
.Upon replacing © by 1-o in (3.1) egsentially their general formulation

of the linear model is obtained, aithough they do not explicitly indicate

dependence on the sequence X,
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We also define here certain moments which are of experimenteal interest
‘and whose asymptotic properties we investigate subsequently. The moments
vV

84 of .
PJ

- n(x) are:

2

(3.4) af =>_p(a =dlx, )P(x, ;)
X

J,n
n-1
And if the appropriate limits exist, we define

(3.5) a§= lim o

i,
n — oo ds

‘The moments (3.4) are formed in an uasymmetrical way; however, they
enter in a natural way in the expression of guantities which are easily
observed experimentally -- for instance, the joint probzbility
P(én+l = J,A = j) . (For other examples, see [6].)

We are also interested in studying extensions of the linear model to
maltiperson situations. We may suppose that we have s subjects in a
situation such that the probability of a particular reinforcing event for
.any one gubject will depend in general on preceding responses and reinforce-
ments of the other s-1 subjects &s well as on his own prior responses
énd reinforcements. The data on each trial may then be represented by an
ordered 2s-tuple (jl,kl,...,js,ks) of integers with 1< j, <7 ,

0 < k, <-ti , for 1 =1, ..., 5, =2nd any sequence of such tuples
represents a possible experimental outcome. Let ééi) and ,Eii) be the
th

response and reinforcement random variables for the i subject on trisl

‘We may then generalize Axiom L to:
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Axiom M. For 1<i<s , if gz(ll) =k and P(x ) >0 then

(3-6)  rall) =3 by = -elealt) < ylx e el

(1) (1) ST (l)
where 0 < @k 5 Xjk <1l and : h .

-Experimental tests of Axiom M for two-person situations are reported

in Estes [5] and in Atkinson and Suppes [1]. ILet xéii be just the sequence

of first n-1 responses and reinforcements of subject 1 . It is an easy

consequence of Axiom M that

R PG A Y PR

() ()

V:J

and it is in terms of X that we define moments exactiy

analogous to (3.4). ‘We shall also be interested in the joint moments

(3.7) oY

v, (1) . (s) _
‘jl’“"j Z P (én = Jl"”’An = JS [Xn-l)P(Xn—}_)"

paul "
n-1

‘and their asymptotes 7v = jl""’js if they exist. .To work with these
latter moments in terms of Axiom M we need the additional reasonable
assumption that when all the n =1 preceding responses and reinforcements

are given, the & responses on trial n are statistically independent:

Axiom I. If P(anl) > 0 then

n-1

palta gl (x ) = I ralt) = 5, |x
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The experimental restriction implied by Axiom I has been satisfied in the

nultiperson studies emplioying the linear model.

4. Asymptotic Theorems for Learning Models.

After dealing with some matters of notation, we state general theorems
on the existence of asymptotic moments. The hypotheses of the theorems give
some broad conditions which guarantee ergodic behavicor. We begin with the

one-person models satisfying Axiom L.

In this section it will be convenient to use some of the notation of

. : —_ & R 3 - =
Section 2. Thus we may write P(ﬁn =] [xmfx ) in place of P(én-Jl Xn-l)

3o indicate we are interested in the last m terms of X 9 - The "sum"

'xm}x’ is just the combined sequence x ‘We reserve the subscript m

n-1
for counting back m trials from a given trlial n

To clarify the general theorems it is desirable to define in an exact
way the notion of the conditional probability of a reinforcing event .depending

on only a finite number m of past trial outcomes and independent of the

trial number.

Definition. A linear model has a reinforcement schedule with past

dependence of length m if, and only if, for all k , n and n' with n,n'>m

and all X s x' and x"

(%.1) CP(E =k |x+x') = P(E =k | ;Em+x") )
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(It is understood that X includes the response Aj 0 which precedes
R :

E _, ontrial n .} It is to be noticed that the use of n on one side
2

and n' on the other side of (4.1} yields independence of trial number.

The term reinforcement schedule has been used because of its frequent

occurrence with approximately this meaning in the experimental literature.

For the conditional probaebilities of (4.1) we shall use the notation

(h.2) n = P(B =k Ixm+x) .

We may now state the first general theorem.

Theorem 4.1. Let ;ﬁ, be a linear model such that

(i) (ji has a reinforcement schedule with past dependence of length m*

(i1} +there is an integer k* such that

(a) 6.4 #0

(b} there is a 5% and an m such that for all sequences X

and all integers n

P(E

¥ Lok
_n+mo._.k Ixn)::a >0 .

Then the asymptotic moments a§ of £ all exist and are independent of the

initial distribution of responses.
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Prooi: The central task is to characterize 35 as a chain of infinite
order and show that satisfaction of the hypotheses of the theorem implies
satisfaction of conditions (2.3) and (2.5). With this accomplished the
asymptotic theorems of Bection 2 may be applied to ;f . It is most convenient
t0 take as stales of the chain the ordered pairs (j,k) , where J is the
response on trial n , say, and k 1is the reinforcement on the preceding
trial. Consider now the reinforcement k¥ of the hypothesis of the theorem.
Let J¥* Dbe a response such that Kj*k* # 0 . (There is at least one such j*
since E:: Kjk =1 ; in the Estes model Jj¥ = k¥ ,) With the pair (j*,k*) as
the state j = of the infinite order chain, we shall establish (2.3) and (2.5).
To verify (2.3), we use (ii)b of the hypothesis and the following

equalities and inequalities, which hold for ail x and n :

P(A

=j% =K%
en+mo+1 J ’En+mb k Ixn)

EZ: P( —n+m - +l =% IEn+n1 ='k%’xm -1+Xn).P(En+m |Xm l n)P(X l| ) '
x —l : o} o} o

Applying Axiom I, the right-hand side becomes:

EE: [(1- Gk*)P(A —J Ix w_ l+xn)+ek* *k*]P(E* O_k* ; - 1T ) P(x lI )
m_-1 :

> O i ZP( =t e _vx )P(x) 1' )
-l O o

>0 A  PE

e LT _ﬂ+mb=k*lxn)
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To establish (2.5), consider the following equalities and inequalities:

(B.3) 1P(A, . =35 B o =k lxex') - P(A ;= d5 B =k | xx") |

= Me,x | P(ay, = IEn== k, x+x') - P(én”ﬂ_:'j |'En,,”= k, x+x") |

- —ril
where Xy meens the last n* terms of x , and where the sequence x
contains at least m occurrences of k¥ , with m > m® . The equality

follows from (i) of the hypothesis, for by virtue of (i)

nk’xm* = P(E , =k | x+x') = P(E v=k | xex™)

“Applying Axiom L once to the right-hand side of (4.3) we get, ignoring L
2 ™mF

| (4

_._nf+lI==j IE__nl"_" k’ X+X-’) - P(A n

A +l"=,j |'En” =k, X-l—X")-I

= (1-8 ) | P(A, =3 |=x) - P(a_w=d mx") | .

We .do not know that Qk ;é 0 , but as we apply Axiom L repeatediy , we obtain

the factor (l-@k*) at least m times, so that

(k.4) |P(a E =k |xx') - P(&_,

'+l 3 I—n <9} +l"‘='j’ En”=k IX+X”) [

< (- )" IP(a, , =3 lx) - P, Tx) ],

% .
where h 1is the length of x —/ The difference term on the right of this

¥/ If all S, # 0 , the original condition given in.[3] would be satisfied;
our weaker condition (2.5) allows inclusion of cases where some of the

@k are O (i.e. where there can be trials without a reinforcement).

2

®
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inequality is not moxe than 1 , so that from (4.4) we obtain the estimate

for m > m¥

m
e < (1- Qk*) 5
Whence
@ ?
E €, < w , :
m=0 ;

- which is (2.5).

On the basis of (2.3) and (2.5) we know from Theorem 2.4 that the
asymptotic cross-moments of Qi exist and are independent of the initisal

distribution of respohses, But

P, =3lx ;)= ‘% P(a =3, B =klx ),

and so the moments QY,n can be expressed as sums of the cross-moments forx
" the infinite;order chain Qﬂ s which insures the existence of the limiting
moments (3,5) snd that they do not depend upon initial'conditioné&

.There are several remarks to be made about the theorem just proved.

First, we observe that a simple sufficient (but not necessary) condition

for (ii)b is

(&.5) min x £0 . ‘ | ;

k*,xm*
m*

The interpretation of (h,5) is that the reinforcing event k¥ has positive

of responges and

Pprobability on every txial no matter what sequence X %
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reinforcements preceded. A number of interesting experimental cases of

the linear model can be described in terms of (4.5), (i) and (ii)a of

Theorem %.1.

I. Contingent case with lag v . In the Estes model let

P(§n==k |§h_v:=j,x) = jkj(v) , for all x such that P(Ah~v'=3’ x)>0 .

To satisfy (4.5), we need only that for some k, njk(v) # 0 for all

Experimental data for v = 0,1,2 are given in Estes [5].

. _ s St Y= ;
II. Double contingent case. Let ,P(gn-k Iéhj"J: A =3 X) e 550 2

for all x such that P(én=j, A =3 x) >0 .

Then (i) of Theorem (4%.1) is immediately satisfied, and for (ii)a and (4.5)
we need a k such that o # 0 and for all Jj and j', T gy # 0.
k sdd
An interesting fact about (I) and (II) is that although they are simple
to test experimentally and their asymptotic response moments exist on the
basis of Theorem h.l, there is no known constructive method for computing
the actual asymptotes. (The Estes [5] test of (I) excludes non-reinforced

trials which cause the computational difficulties.) It may also be noted

that the convergence theorems in Karlin [8] do not in general apply to (II),
and apply to (I) only if v =0 .

On the basis of the proof of Theorem 4.1 we may, by virtue of Theorem 2.2,
conclude that the asymptotic joint probabilities of successive responses also

exist:
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Corollary 1. If the hypothesis of Theorem b1 is satisfied, then for

‘every m the limit as n - o of P(éh+m =Jo Ay =g 0 s A= JO)

exists.

We may regard the quantities P(A = J Ixn“l)', for 1< j<r asa
random probability vector with an arbitrary joint distribution Fl on
trial 1, and distribution Fn on trial n . The following corollary 1s

a consequence of the existence of the moments Qg independent of the initial

regponge probabilities.

Corollary 2. If the hypothesis of Theorem 4.1 is satisfied, then there

is a unique asymptotic distribution FOD , idndependent EE-'Fl s 30 which the

distributions F, converge.

For the multiperson situations characterized by Axioms I and M, we have a
theorem snalogous to Theorem 4.1. For use in the hypothesis of this theorem

we define the rotion of reinforcement schedule with past dependence of

length m , exactly as we did in {%.1), namely, we have such a schedule if for

all k, 1<i<s, all n and n' with n, n'>m and all X x' and x"

=P(§£l)=k(lz‘..,§£5)=k(s)|xmfx‘)=P(Eél)=k(l)nqo,Eis)zk(S)lxm+x"),

2

")

2o vy

k(52xm

Theorem b.2. Let ?7L be an s-person linear model such thab

(1) 771_has a reinforcement schedule with past dependence of length m* ,



(1Y%
(i1) there are integers k(l) , for 1<1i< s, such that

W .,
NETRE

(a) @

{b) there is a ®* and an m, such that for all sequences x

and all integers n

P(gr(i% = xO -r(:n)z = k(s)*lxn) > 8% >0
o] [e}

Then the asymptotic moments 7V(l) (2) (s) of %% all exist and are
R At 6 AP
-independent of the initial distribution of responses.

Proof: The states of the chain are now defined as 2s-tuples

(3(12--1;3(52 k(lg..,, k(s)) B j(i)

where is the response made by the

ith-subgect and k(l) is the reinforcement for that subject on the preceding
i )%
NCOEI

f1 \x
trial. Using the reinforcements k(l) of the hypothesis, let e

- (i (1 )% * * *
suen what xUH ) k0 e maxe (385000 RBRk) o
J Kk
the state j = for which we establish (2.3) and (2.5).

To verify (2.3) we proceed exactly as in the proof of Theorem h.l,

applying now Axioms I and M instead of L, and we obtain that

SO O (e) (o) ) L () (o)
0 k(2 )

—n+m +l h —T+m +17d ? ~n+mo 2ome n+m

Jmi k

@) e
> 77 o 7“3<1>*k<1>* -
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For (2.5), we first observe that by virtue of (i) of the hypothesis

and Axiom T
] = s a8 = )20 w0, 280 w6
e = 00 48] = o) O ) - e
W) e, ”7P(An ) s ) . UP(A(:,L,_?_]_ 3 B ey ).
LR 2%

We notice next that the right-hand side is

= j-rk(l)q“ i&(s) [ (A(h)—l l)IE(l) X+X'A)|77 P(A(l '(i)lgr(li,)=k(izx+x‘)
77P(A (1) |E =k 23:4—:{") [+ ﬁp(él(ﬁzl-_-g(i) |_Eé%)=k(izx+x”) :
i=P

IP(A(%il J(l)|E(l) )x+xf) _ P(A(%zl J(l)IE(l)~k )X+X“)|

Continuing this same development, we obtain:

< Z ! P(A AL ._J(l) IE(l )X+X,) P(A(l) (1)|E(1 e )x+x")l

—n P41 =3

And by the line of reasoning used in the proof of Theorem 4.1, if the sequence

(3%

*
x contains state .,,k(s) ) at least m times the last quantity is

<Z (1- e (1)*)

Provided m > m* +this inequality yields an estimate of €, from which we
conclude that (2.5) holds. The existence of the asymptotic moments then

follows from the theory of Section 2 as in the case of Theorém-hul. Q.E.D.
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A pair of corollaries folliow from the theorem just proved which are

‘exactly like the two given after Theorem 4,1.
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