


in P has so little use in entropy theory. The more interesting

operation on r would be the composition of two experiments,

rf\ 1\ f
2

, defined in Section 3.3. The only problemhere is

that < P , ~ , (l, , • , A > cannot be embedded into a Boolean

algebra.

We shall now turn to the problem of conditional entropy.

Another interesting similarity between the conditional entropy

and (conditional) probability is the following:

(1) H( f j G) = H( f l • r?2) - H( (2) ,

P(A/B) = p(AB)/P(B), P(B) > 0 ,

(2) ~lll f2~H( PJ 1;) =H( PJrY) ,

All B 4*P(AjB) = P(A/D), if P(B) > 0 ,

(3) H(f/ ~. (3) = H(f'l fi ( 3) - H( tf/ f 3) ,

P(A/BC) = p(AB/C) / P(B/C), if P(BC) • p(c) > 0 •

We shall consider these similarities as a heuristic guide to

further developments of entropy structures. One can consider

the entity OJJ f'2 to be a partition (experiment) in

indistinguishable from

Pj 1-'2 is the set of experiments

PI' given r?2·

As in the case of probability structures (see Section 2.4,

Definition 2) we shall studY a kind of composition of entropy

structures. In particular, given the algebra of experiments

< D, P , ~ >, we shall stUdY a binary relation ~ on P X P
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and a special representation f'unction \jr IP --+ Re, which,

among other things, satisf'ies

< PI ' 1'2 > ~ < (}l ' (]2 >~1(r( PI) + \jr( (2) < 1(r( 4\) + I/f(e(~)

f'or all (11' ~, (11' ~ EO P .
There are several important partial interpretations of' this

relation: First of' all, the qualitative conditional quasi-entropy

relation hopef'ully can be def'ined as

Naturally, we can put

and then the probabilistic independence relationR on experiments

is given by

It is clear that we could also talk about positive and negative

dependence notions similar to those introduced f'or probabilities.

The structure < IP x IP , -4 > also has independent importance

in algebraic measurement theory, where the atomic f'ormula

< f
l

, f
2

> ~ < Ql' £7
2

> may be interpreted as a comparison

of' two emPirical compositions of' certain physical entities, which

is representable by an inequality between the sum of' magnitUdes

of' a linear physical quantity. In this paper we shall be interested
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only in the entropy-interpretation.

DEFINITION 7 let <D. = < Q, tit , ..l.

Then the 'luadruple < Q, P , ~' , lL >

> be ~ FAQQP-structure.

is said to ,be a finite

qualitative quasi-entropy difference structure (FQQED-structure)

~ Q if and only if the following conditions are satisfied

for all variables running ~P:

IP is the algebra of finite experiments over

the probabilistic independence relation on P
relation ~ p X P ;

Q •,
and

lL is

d. is a

> ~<f l ~ f 2 '*< f 2, r:
< (J,P>..),<:J3,P > ,

fl,rP > ;

if /3':'6 ;

< f l , f 2 >~< Ql' et2 > II<Ql' a2>~< Pl , P2>;

< Pl , f>2>~< a l , c22 > =>< Q2' 4\>~ < ~2' f l >;

W .. < « ,., (). >,.;,. <:1(., U'i' »=;;>< Y, d( >~< f.,q, >,V 1. n .•.. }.. 1. ,', 1. "'" ", \ n n ' ' n n

A

if E (f. =
i < n 1

E tf.
i < n 1

& E /1.
.< l.l:-l
1 n

=
/'0

E cf. ,
i < n 1

where
A A

f{ i' ai' :£2!" i;:; 1, 2, ... , n

have the ~ meaning as in Definition 6.

The remarks to Definition 6 are relevant also to Definition 7.

The content of the definition should be clear; therefore we proceed

to Theorem 16.
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be ~ structure, where n is ~ nonempty finite set;

THEOREM 16 (Representation Theorem) Let < n, p ,

set of partitions of n; JL is the independence relation on

in the ~of the Definition 5; and ~ is a relation on

Then <n, p , .{ ., JL > is ': FQQED-structure if and onlY if

there exists ~ quasi-entropy function H: IP--..+Re satisfying

the following conditions for all Ii, ~, 01' Cl2 E P :
(i) < f l , f

2
> <4 < lip a2 >#H( f l ) - H( f 2 ) :::: H( £11) - H( c22) ;

(ii) H satisfies conditions (ii) - (v) of Theorem 15.

Proof: The necessity is obvious. For sufficiency, let < n,p,~ , JL >

be a FQQED-structure over ~ Let lY( B) be the k-dimensional

vector space, described in the proof of Theorem 15. We can transform

pxp into a finite subset of the (external) direct sum

'71( 18) e 1/(8) by assigning to each pair <rf,(1) a
A A

2/( B) V(B) .vector f $ a E ED We then proceed

almost exactly as does Scott (D. Scott [11], Theorem 3.2, p. 245),

so that the axioms D
3

, D4, D
5

are justified. As in Theorem 15,

the normalization conditions Dl , D2 will allow us to construct

a function H (Which exists on the basis of D
3

- D
5

) with the

desired properties (i) and (ii) in Theorem 16. Q. E. D.
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Now if we put

we can easily prove the following theorem with the help of

Definition 7:

THEOREM 17 Let < 0, p, ~ , lL> be a FQQED-structure Over- --
a FQCP-structure. Then the following formulas hold, when all- -- ---_.-
variables ~~ P :
(1) ':'!.S. ~ equivalence relation;

(2) tip --4' fJ f2 ;
(3) iJH3 .J,' ~/A, if 03.:. 6 ;
(4) ?J (>2':' 1'1 . 1'1 P2 ;

(5) ;P!I~ .:.. (J/ rJ ;

(6) . {i-'/I\ .,;.., PI fJ2 ;

(7) Pl -01.' fJ2~ ~I1'2 ~,?!fll ;

(8) PJ P2 • fJ 3 ~ f'l . fJ! P3;

(9) f'J r?2 • rP3 d,' f'J ~ ;

(10) f'J .P2 ~.Pl ;
(il) tfl :E f'2 ~PIt' ~. f'JfJ ;

(12) f:E f l ,=*(11 • PI"": ~/f1;

(13) _·1'1 :E ~2 ~tfI Pl'::'tJ' ;

(14) fJ fJ2 .:. fl~f llL f'2 ;
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(15) t>!P~,[J,)P~~·12IP~·P2·r2 1;0, if

1'1' P2 Jl a ;
(16) Pl' f'2~ ~. t12=*(tf2~·t22~fi!r22~·f!f2);

(17) ( P/ (02 J.. ([! r:l2 & P2~'a2) =::;;. [>1 • P2 .,;".. &1 • a2 ;

(18) (1'1' r2~'Ql . &2 & rJ 2 ~'~2) ~ r/'/ f'2~' ctj cl2 ;

(19) ({'/ P2 • f3~' (2/ f12 • t1.. 3 & P,) fJ3 -4:&,) (23) '==*

fJl • ?,)P3J; (11 • (),)Q3 ;

(20) ~. fJ,) f 3 :' (Jl . f1,) (/3 ~

(J>/1-12 ' tP3 ~·a/ &2 • (£3 '=OQ,)Q3 J,.·f,) r3) ;

(21) (P/f'2' f'3<:.. a,)a..3 & P,)tP3 .Jo rJ.!ti2 • (23) =9­

fJl . P,) P3 d.: ill • <2,) (l3 ;

(22) (ll/1-'2 -d.: &/ (]2 & a!t22 ~. iR!(/(2)*iP! f2~ ~/1(2 t

No more than with Definition 6 can we hope to show that

(3.10)

without giving sane further axians to link ~. with the probability

relation ~ on 'Ct .
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It was Khinchin [4-0] who showed that the conditions

(a) H( 0"1 • rP 2) - H( &"2) = H( U'j f 2 ) ;

(b) H(f) '::::H(b), if If I = 161 ;

(c) H( fu (¢l) = H( f?) ;

imply the identity

and therefore also the identity (3.10). In our case (a) is true

by definition, and (b) and (c) become valid by adding the following

two axioms:

D6 < fD, tY > ~ < e , cr >, if I tP I = 16' I ;

D
7

< P u COl, (j > ~ < ~ ,(j >.

Naturally e must exist, otherwise the axiom D6 would be

vacuously true. Given that, DO - D
7

imply the conditions (a)~ (b),

(c) for finite qualitative conditional entropy relations.

3.6. Qualitative Information Structures

The reader may be somewhat disappointed after reading the

previous section by the very general and rather weak nature of the

results on entropy structures. It should be emphasized again,

however, that we cannot expect simple results about fairly com-

plicated continuous functions in terms of relations on finite

domains.
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In this section, unlike the earlier ones, we shall work with

infinite Boolean algebras; as we shall see, the results will be

somewhat stronger. We are able to give a definition of information

measure without~ recourse to probabilistic notions.

The structure to be studied here is a Boolean algebra tt

enriched by two binary relations JL and.{o ; the relation JL

can be interpreted as follows:

A JL B # Event A is independent of event B (A, B E U ) ,

and the ~o is interpreted as before:

A ./.~B *,,>Event A does not have more information than event B

(A, B E ~)

The novelty here is that we give axioms for JL, 4" , and

t:t which, without recourse to probability theory, ensure the

existence of an information measure in the standard sense.

The need for a formalization of a notion of qualitative

independence to match the standard probabilistic notion has been

felt for a long time, but the author is not aware of any serious

attempts to solve this problem. In this section we shall try to

work out such a formalization. First, perhaps, we should turn

to the definition:

DEFINITION 8 Let n be ~ nonempty set, a nonempty family

of subsets ~ n such that it is a Boolean algebra, and JL and.{o

binary relations on tt
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Then the quadruple .< n, f::,t, ~o, lL > is called a qualitative- - -- -
information structure (QI-structure) if and only if the following

conditions are satisfied when-all variables run over ~. :

1
13

A 4.0 B & e ~ D ""* A. n e~' B n D ,

A Jl B & A 1 .B ... (A ..:; IJ v B .t: IJ) ;

A 4' B~ A U e~· B U e, it' e 1 A,

A ~< B _ A n e ~ B n e, if e Jl A,

11

1
2

13
14
15
16
1
5

IS

19
110

:!;ll

112

¢JiA;

AlLB .... BlL A ;

AJl B ==> B lLA ;

A Jl B&A Jle 9 A Jl B U e ,

p, .J"o ¢ ;

A..!;f¢;

k~," B v B~' A ;

A ~'B & B ~oe -=>A J,0 e ;

A~'B & e J, D ,,*A U e ,(,°B U D,

B •,
B & e ~'IJ ;

if B lD ;
if AJle&BJlD;

If A. Jl A. for i 1. j & i, j < n, then
-J. J- r ---
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Remaxks:

(i) All axioms but the last two, which force tt to be infinite,

are plausible enough. Axioms 114 and 1
15

could be replaced

by some kind of Archimedean axioms. Moreover, the reader may

find some relationship to Luce's extensive (measurement)

system.

(ii) The axioms can be divided into three classes: First, those

which point out the properties of R; secondly, the axioms

for ~ ; and thirdly, the interacting axians giving the

There is no doubt about•relationship between R and ~,

their consistency.

(iii) Instead of taking a Boolean algebra U, we could consider

a complete complemented modular lattice, in which the relation 1
would become a new primitive notion. In this case our axioms

for 1 and ~ come rather close to dimension theory of

continuous geometry.

It is easy to show that Definition 8 implies Theorem 8, if we

put A ~ B4=:>B ~aA (A, BE t:t) •

For purposes of representation we shall need a couple of

notions which will be developed in the sequel.

Let < n, U, ./"., , R> be a QI-structure. Then 'ttl':: =

([A]~ : A E t:t ), where [A],;:. = (B : A ~ B) • For simplicity

we put [A] = [A]~ Now we define a couple of operations on 'ttl""

(a) [A] + [B] = [~ U Bl ], if ~ 1 Bl and ~ ~ A &Bl ~ B ;

(b) n' [A] = (n-l) • [A] + [A], 0' [A] = [¢] ;
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(c)

(d)

[A] • [B] = [~ n B
l

] ,

[A]n = [A]n-l • [A] ,

if ~JlBl

o[A] = [n] •

Axioms 1
12

and 1
13

will guarantee the correctness of· the

above definitions, that is, that they do not depend on the particular

choice of repr,esentatives ~, . Bl • The existence of the defined

terms is implied by 114 and 115 • Weakening of the axioms +14

and 1
15

would allow us to define only partial operations +,

n • (-), ., (- ) 11 on ttl::'.
We put, as might be expected,

[A] < [B] ~ B ~. A (A, B € a ) .

The reader can easily develop the algebra of the ordered

semiring R = <'UtI"', [.0], [n], + , , < > • In par-

ticular, he can show that the operations • and + are com-

mutative, associative, monotonic, distributive, and the zero and

unit element act as usual. Obviously, theorems like

m· [A] ::: n • [A] ~ m::: n, provided [A] F [,0] ;

[A]n::: [A]m~ n < m, provided [A] F [n] ;

(m+n) • [A] = m· [A] + n • [A] ;

[A](m+n) = [A]m • [A]n, are alsb true.

Our Representation Theorem for QI-structuresis based on the existence

of a function cp: IR~ Re such that
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(i) [A] ::: [B] ~qJ( [A]) ::: qJ( [B]) ,

(11) qJ( [¢J) = 0 ,
(iii) qJ([U]) = l ,
(iv) qJ( [A] + [B]) = qJ([A]) + qJ([B]) , if ALB;

(v) qJ( [A] • [BJ) = qJ( [AJ) • qJ( [BJ) , if AlJ.B •

There are several ways of showing the existence of qJ: R~Re •

We prefer here to use the method of lJedekind cuts of rational numbers.

In fact, the sets c
B

= ( !!! : m • [U] < n • [B]}
n -

and

c~ = (~ CUlm ::: [B] n} form a Dedekind cut for fixed U E U ,

since

(a) m • [U] ::: n • [B] ~ n • [B] < m • [U] and

CUlm < [B]n [B]n < CUlm by 1
7

*)_ Y..

(b) m c & 12. E
m 12. and- E C ~- <n B q B n q

by transitivity.

(c) defines 0 and *cB = set of all rationals, defines + 00 •

The real number which is defined by the Dedekind cut cA (c~ )

will be denoted by #c
A

(#c;)

functions on IR as follows:

We shall define two real-valued

*) V denotes the logical connective 'exclusive or'
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(1) CPu([U)) ::= U , where O<u<l,

cp) [A)) = u , #cA

(2) cp*( [U)) ::= v , where l<v< + 00 ,
v

cp~([A]) = v-#cA

In the following we shall omit the indices u and v in

functions cp and cp*.u v

Using the consequences of axioms I
l

- I
15

, it is easy to show that

the conditions (i) - (v) hold for cp a.nd cp*. In fact,

cp([AJ) S cp([B))<!i ~u • #cA S u • #cB~> (~ m'[U] S n'[A]) c

c (.~: m • [U]Sn • [B]) _ [A]S [B]. Similarly things
- n

hold for cp* If ALB, then cp( [A]) + cp( [B]) =

= u '#cA U B' a.nd similarly for cp*.

cp( [A]) = cp( [A U ¢)) = cp( [A]) + cp( [¢)), since p1 A •

Hence, cp( [P]) = O. Again, cp*( [P]) = cp*( [A n ¢]) =

= CP*([AJ) • cp*([¢)) = 0, since ¢ II A. In view of cp[P] < cp([n)) ,

we can normalize both cp and cp* by taking

CJliLpJ)
Cii\1ifIT

and clUA])
~ •
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Now the fact that cp([A]) :s cp([B])~cp*([A]) :s CP*([B])

implies the existence of a one-one mapping " : [0, l] .... [0, l]

such that cp* = " 0 cp •

Since [A]· ([B] + [C]) = [A] • [B] + [A] • [C], we get

cp( [A] • ([B] + [c])) = cp( [A] • [B]) + cp( [A] • [c)), and so also

,,-l(cp*([A]) • cp*([B] + [C])) + Tj-l(cp*([A]) • CP*([B])) +

+ ,,-l(cp*([A])0 cp*([c)))

For A J<, n we get

,,-l(cp*([B]) + cp*([C])) = ,,-l(cp*([B])) + ,,-l(cp*([C]))

But this is the Cauchy functional equation for ,,-l in the

real interval [0, l]. Using the standard method of solution

of linear functional equations, we get ,,-l(cp*( [A])) = ct • cp*( [A]) ,

where ct is areal positive constant. The normalization of cp

and cp* gives finally cp*( [A]) = cp( [A] ) for all [A] € ttl,!?.

We can now prove

THEOREM l8 (Representation Theorem)I.et < n, U, ~. , II > ~

!!. QI-structure. Then there exists ~ finitely additive probability

measure P on U ~ that < n, tt, P> ;!!.~ probability

(l) A~·B<=+I(A) < I(B);

(2) All B -I(A n B) + I(A) + I(B) ;

(3) I(A) = - log2P(A) •

Proof: We put P(A) = cp( [A]) for A € tt. Then from the

previous discussion of cp it is easy to see that (l) - (3)

are satisfied.
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Clearly all the axioms II - I
13

are necessary conditions

for the existence of the information measure I.

and I
15

are not necessary. We leave open the problem of formulating

axioms both necessary and sufficient for the existence of the

measure r.

Aware of the relatively complicated necessary and sufficient

conditions for the existence of a probability measure in an infinite

Boolean algebra tt "the author will not go here into further,

details.

I(A) = logl(A) is called sometimes as self-information

.£! the event A. The next '(slightly more general) notion is the

so-called conditionalself'-information .£! event A, ,given event B:

A further generalization leads to the

conditional mutual information .£! events A~ B, given event C~

p(AB/c2
I(A:B/C) =log2 p(A/e),p{BjC) •

Naturally, we would like to give representation theorems also

for these more complicated measures.

In this last case, our basic structure would be the set of

complicated entities A:B/C (A, B, C E t:t, p-4.C) and two binary

relations lL and ~ on this set of ,entities. In fact, it would

be enough to consider the formulas , ~:BJCl ,.{o A2:BlC and

Ale. lL, B/c, :;;incethe ,remainder can be defined as follows: '
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A:B ~·C:D _A: Bin -4" c:D/n j

A ~·B _A:A~' B:B j

A/B .... c/D _A: A/B ~" C: c/D j

A Jl B <=;.A/n Jl Bin, where A, B, C, D E tt .

Some of the properties of the gualitative conditional mutual

information relation 4· are analogous to those of the qualitative

self-information relation. For example,

(~:C/El ~'A2:C,jE2 & Bl:D/El ~ B2:D,jE2) =* ~Bl:CID!El J.-A2B2:C2D,jE2 '

if A!E i 1 B!Ei & C!Ei [ D!Ei & AiB!Ei ~ CiD/Ei , i = 1, 2 •

We do not intend to develop further details here, because of

the rather complicated nature of these properties. Note that we

have several notions interacting here: conditional events, the

independence relation, and the mutual information relation. From

the point of view of algebraic measurement theory the problem is

to give measurability conditions for very complicated relations

defined on the above-mentioned complex entities.

4. APPLICATIONS TO PROBABILITY LOGIC, AUTOMATA THEORY, AND

MEASUREMENT STRUCTURES

4.1. Qualitative Probability Logic

In methodology of science, inductive logic, and in philosophy

generally, it is customary to consider the probability of statements

rather than the probability of events. But even in the field of
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cr-ideal

applied. probability theory we quite often appear to speajt of

probabilities of statements rather than .of sets. For example,

we talk about the probability that the 'random variable E is

not greater than the random variable Tj,' instead of taking the

probability of the set (ill € n : E(ill) :5 Tj (ill).). This case, indeed,

is nothing to worry about, since the appropriate translation from

statements into events is innnediately obvious. The main problem

comes in when we want to talk of the probability of.a stat<!ment

containing quantifiers. The standard probability space A=
= < n, l7t, p > takes care at best only of the countable cases,

so that the logical operations ]x, \Ix. are often not adequately

represented by the cr-operations in tt; especially, when x runs

over an uncountable domain. Consequently, the problem arises of

how to assign a reasonable probability to quantified statements.

The basic idea, following Scott and Krauss [20]., is quite simple.

We turn the Boolean algebra tt:, given in A, into a complete

Boolean algebra by taking the quotient ttl6. p ,. modulo the

~p of sets of measure zero. Then arbitrary Boolean

operations are admitted. In addition, P turns into. a strictly

positive measure on 'Cli ll.p • Therefore, if we assign homo-

morphically to every first-order formula an element of 'Ct16. p , no

trouble will arise from using any sort of quantification. This should

be clear enough. But the trick is not so innocent: Since ttl ~p
satisfies the countable chain condition, all Boolean operations
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actually reduce to countable ones; therefore the quantified formulas

will get probabilities regardless of whether they are defined on

a countable domain. Clearly some big Boolean algebras may be needed.

But then we may not be able to guarantee the existence of a probability

measure: Probability with values in a non-Archimedian field still

may exist, but then we are faced with a problem of interpretation.

In the author' s opinion, the problem can be solved by considering

a qUalitative probability structure < n, t:t, ~ > for which,

eventually,we will be prepared to give up the validity of the

representation theorem. In fact, the formula A~B for A, B € ~

has a perfectly good meaning or content in the above-mentioned

fields, be it representable by a probability measure in the sense

of problem (PI) or not. In particular, tt can be arbitrarily big,

if needed. What matters now is only an appropriate way of assigning

Boolean elements to formulas.

For this purpose consider a first-order language £-;
; < V, F, P, ." v ,&, ~ , ~, V , 3 >, where V

denotes the set of variables x, y, z, v, w, ••• , F the set of

functors, P the set of predicates, and the remaining symbols

stand for logical connectives and quantifiers in the usual way.

Simplifying the problem, without losing generality, we shall con­

sider just one two-place functor ~ €·F and one binary predicate

p € P We define recursively first-order formulas over £,

in the well-known way. If needed, we may include among the logical

symbols also the identy predicate ;. We shall introduce Boolean



models as probabilistic intended interpretations of cf; • The aim

is here to replace the truth values of ordinary logic by values in

tt; then a formula is valid if it has value n, and invalid if

it has value fJ. The various I truth values I are ordered by the

qualitative probability relation

structure A = < n, t/t , ~ >

this section.

~ of the qualitative probability

which will be held fixed throughout

A nonempty set ,8 together with a mapping "': 8 x 8 _ a
is called a Boolean set (A -set) if and only if for all a, b, c E 8

(i) [a '" a] = n ;

(ii) [a '" b ...,b '" a] =n ; *)

(iii) [a '" b n b '" c -+a= c] = n , where a'" b = "'(a,b) •

We could think of several mappings on 8 , and they would

yield different Boolean identity relations on 8 If there is no

danger of confusion we shall use 8 to refer to the structure

< 8, '" >, and 8, 81 , 82 , ••• will be variables for Boolean

sets. Hence, roughly speaking, a Boolean set is just an ordinary

set in which the natural identity is considered in terms of a

Boolean-valued logic.

*) If A, B E 't:t, then A..., B, denotes
should,be no confusion with the mapping
f:A--->B.
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If - denotes the strict equality = and U is a two-

element Boolean algebra, then < S, ;; > is equal to S.

A mapping R: S X S Re is called a Boolean binary relation

(A -relation) iff for all a, b, c, d € S

[(a;;cnb;;d) ..... (aRb -.?cRd)] = n,

where aRb = R(a,b) •

It should be clear how one could define more general relations.

A Boolean relation R, defined on a Boolean set S, forms

a Boolean relational structure (A -structure) < S, R> •

A mapping 1': S X S ..... S is called a Boolean binary operation

( A -operation) iff for all a, b, c, d € S

[Ca;; c n b;; d) ..... f(a,b) - f(c,d)] = n •

It is immediately clear how one gives a definition of Boolean

functions.

A Boolean set S, together with a Boolean relation R and a

Boolean operation l' on it, defines a Boolean structure < S, R, l' > •

Now we are ready to interpret the language'£ in a Boolean

structure < S, R, l' >, and give a definition of the qualitative

probability formula "'1 ~ "'2' where. "'1' "'2 are formulas of J:,

We give values to variables x, y, z, ••• of V in the

Boolean set S ., ~ will denote a Boolean operation l' in S

and p will denote a Boolean relation R on S. Having done

this, we get a possible Boolean model
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If the vaJ.ues of x,yare x, y € S, then the value of the·

term .~ x y is f(x,y) • It is obvious how to extend this

definition recursively to aJ.l terms.

Now the valuation I D
*) of formulas of LoneY

into tt is defined recursively as follows:

(i)

• •
= 1"1 5 1'2;

(ii) I.., <P let' = rn:; ;

(iii) 1 <Pl v <P
2 let = 1 <Pl tf U 1 <P

2 '.t ;

(iv) IV x <P !t = 1\1 <P(a) if , if <P(a) = [xl a]<P ;
a€S

where '1"1' '1"2· denote terms, <P, <Pl , <P
2

formulas of .c , and

[xla]<P is a substitution operation in the ·metalanguage of dC •

We can put

. and. interpret <Pl ~,<p2 as follows: formula <Pr in the mOdel <if
is not more probable ,than .formula<P2

Considering all possible valuations I if we may define

for all d '

and obtain a qualitative probability structure of first-order formulas

< F, ~ >, in which, hopefully, the mentioned methodological

*)This ingenious notation is due to Scott and Krauss [20].
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problems of empirical sciences can be studied.

Sometimes we start with a first-order theory Y and take

the class of all its models M.r. Then clearly

Note that in a qualitative probability structure of formulas

< F, ~ > we are given a priori a fixed structure A =

= < n, tt, ~ >. and in the case of < F, ~eY' > two,
structures, fA and cr. The choice of cf is given by

empirical interpretation, but it is not clear, on the basis of

which criteria should we choose A .
One way of answering this question would be to associate

with R a random relation R*, that is, a mapping

R* : n --> p(S X S) , *) for which

The random relation R* is a random variable which takes as

possible values ordinary relations on S. Now the randomization

may be dictated by the empirical interpretation. In particular,

we may be forced to take a special n, and U will be given

by the conditions of observation. The subtlety of the events we

*)IfA is a set, then P(A) denotes the set of subsets of A.
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can observe will motivate us to choose an appropriate algebra

from the lattice of algebras over !1, ordered by the finer-than

relation: ttl G: z::t;. Finally, the probability relation ~

is given by the random mechanism of R*. If the randomization

of R is not possible, we have to choose fA.. subjectively.

If <!1, U , ~ > is a qualitative conditional probability

structure, then we can define the qualitative conditional probability

relation on formulas. from ~ as

I ~l I / I ~2 I J, I '!l'l J / I '!l'2 I .

If we proceed in the same way as above and take a semiordered

qualitative (conditional) probability structure, we can define

notions like acceptability, rejectability, and the like. If needed,

we can remove the condition that U be a Boolean algebra,. and

consider ~ as a lattice.

We shall not develop any specific details of these notions

here.

4.2. Basic Notions of Qualitative Automata Theory

In this section an application of qualitative probability

structures to probabilistic automata theory will be presented.

Automata theory is considered as a part of abstract algebra.

Deterministic automata theory is a very well developed discipline,

whereas probabilistic automata theory is still at the beginning

stage. An excellent review of the subject can be found in

R. G. Bucharaev [59].
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are

Probabilistic automata represent empirical discrete systems

in which statistical disturbances (noise) or uncertainties have

to be taken into account. It is assumed also that the system has

two channels: the output and transition channels.

From a formal point of view, a probabilistic automaton is

a many-sorted structure*) < =:, e, ~, H>, where =:, e, ~

finite nonempty sets (the set of inputs, the set of outputs, and

the set of (internal) states) and H is a conditional probability

function assigning to each 'conditional event' (O,s')/(e,s)

(where ° € e, e € =:, and s, s' €~) the probability that

the automaton transits to state s' and produces output 0, given

that the automaton is in state s with input e.

From a purely conceptual point of view, instead of taking H

to be a mapping as above, that is, H: =: X ~ ---.g(e X ~), where

.f}xe X~) denotes the set of probabilistic distribution functions

over e X~, we can consider H to be a more general sort of

mapping. In particular, we call the automaton < =:, e, ~, H >

Boolean if

**)algebra.

H : =: X ~ ~ r;re X

Then H((O,s')/(e,s)) =

~, where U is a Boolean

the Boolean (truth) value of

,

the statement that the automaton transits to state s' and produces

output 0, given that it is in state s with input e. In the Boolean

algebra tt we can have a qualitative probability relation ~

*) By a many-sorted structure we mean a structure which has
several different domains (universes).

**) BIf A and B are sets, then A denotes the set of mappings
from B into A.
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and therefore we can consider the quaJ.itative probability formula

with the obvious interpretation. Since we

would not want to bother about the meaning of the algebra.t:t ,

we shaJ.l proceed in a more straightforward way, namely, by replacing

the function H by a qualitative probability relation. For this

purpose, we have to consider input events (take just the elements

of .J?(=.)) and state events (take the elements of ..J.?('L.)). More

specifically,

the output event 01 and the state event. Si given

input e l and state sl are not more probable than the

output event 02 and the state .event 82 given input e 2

and state

This is the intended interpretation which we shaJ.l deal with.

First comes the definition

(4.1)

DEFINITION 9 ~. many-sorted structure < =., e, E, ~ > is

called ~ finite qualitative probabilistic automaton (FQP-automaton)

if and only if the following conditions are satisfied for all

variables running~ appropriate~ a~ explained in (4.1):

=:, e, and 'L. are finite nonempty sets (input, output, and- - . --
state sets); and ~ is ~ binary relation on
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..£ (e) x £('L.) x:::: x 'L., where the formula generated by ~

is written ~ in (4.1);

~ (¢,¢)/(el,sl) ~ (e,'L.)/(e2,s2);

M2 (¢,¢)/(el,sl) ~ (o,S')/(e2,s2) ;

M3 (Ol,si)/(el,sl) ~ (02,S2)/(e2,s2) V (02,S2)/(e2,s2) ~ (Ol,Si)/(el,sl);

M4 \vii < n[(Oi,Si)/(ei,si) ~ (Qi,Si)/(et,sf)]

(Q ,S')/(e*,s*).{. (0 ,S )/(e ,s )"nn nn. nn nn

We have mentioned many times that the characteristic function

occ=ring now in M4, can always be eliminated. To be completely

clear, we put [(O,S)A/el'sl](o,s) = 1 iff· a e 0& s e S ,

otherwise zero. After those experiences obtained from manipulations

with probabilistic relational struct=es, we might suspect that

this definition is just the 'qualitative version' of the standard

definition of probabilistic ailtomaton. In fact, the following

theorem can be easily proved.

THEOREM 19 let <::::, e, 'L., ~ > be :=.many-sorted struct=e,

described by .axiom MO ~ Definition 9. Then it is a FQP-automaton

if and only if' there is a function H: :::: x 'L. --> c0 (e x .~) such

that <::::, e, 'L., H> is.~ probabilistic automaton (especially,

H((o,s')/(e,s)) is non-negative and 'L. H((o,s')/(e,s)) = 1),
oee
s'eL.
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and (ol,si)!(el'sl) ~ (o2,sp!(e2,s2h••H((ol,si)!(el'sl) <

< H((02,s2)!(e2,s2))'

Taking H in the probabilistic automaton <[ = < ::::, EI, ~, H >

to be a special function, we obtain, amongst others, the following

classes of automata:

C is called a Mealy-automaton iff H( (0, s ' )! (e, s) =

= H(o!(e,s)) • H(s'!(e,s)) •

(' is called a Moore-automaton iff H(o!(e,s,s'))= H(o!s') •

C is called a probabilistic automaton with random output

and deterministic transition iff

(i)

(ii)

(iii)

H(s'!(e,s)) = 1, if :3
f

[sl = f(e,s)], and zero otherwise.

(iv) C is called a probabilistic automaton with random transition

and. deterministic output iff

H(o!(e,s)) = 1, if :3f [o = f(e,s)], and zero otherwise.

A special case of the Moore-automaton is the Rabin-automaton

< ::::, Z, Y, H > where 'I' = (s: s € Z & g(s) = l}, where g is

a mapping from ~ to EI.

The qualitative version of these automata is quite obvious.

In the case of Mealy,.automata we have to require that o!(e,s)Ji s'!(e,s);

and the appropriate axians can be stated easily by using the results

of Section 2.6 on qualitative conditional probabilities. Similarly,

the Moore-automaton is specified by the requirement o!s' Ji (e,s)!s' •
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Notions like subautomaton, isomorphism and homomorphism of

automata, reduction of states, direct sum and tensor product of

automata, are quite easily defined. Since we are not going to

develop any specific theory about the properties and mutual rela­

tionships of those notions, we shall not give any further definitions.

The notion of the event x realized by qualitative probabilistic

automaton is also easy to define.

If somebody wants to study semiordered qualitative probabilistic

automata, he is welcome to do so. All obvious combinations of these

notions are hardly supported at the present time by any empirical

problem. On the other hand, from a theoretical point of view,

they represent a good source of mathematically interesting theories.

4.3. Probabilistic Measurement Structures

The notion of a relational structure is fUndamental in most

current empirical theories. Various ordering structures furnish

the common idealization of a large number of mathematical, physical,

behavioral, and other scientific conceptual structures in which

the notion of a relation occurs. However, in numerous instances

in which these relational structures are applied, the situation

or the problem is rather over-idealized. This is evidently the

case, for example, in measurement. If the relations are determined

by exper:iment or observation, undoubtedly they must be supposed to

depend on chance. In repeated experiments or observations (under

fixed conditions) we do not get unvarying results, because of
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'noise,' an unavoidable phenomenon with statistical structure.

For instance, it is qUite connnon to describe the measurement of

weight of a given set of objects using an equal-arm balance system

by a binary relational formula aRb (object a is less heavy that

object b). This method is completely correct if the weight-difference

of objects a and b is essentially greater than the friction in the

balance system and the statistical disturbance factors. But in

the case of precise measurement with relatively small weight-differences

the relation R would not serve as an adequate notion for the meas­

urement problem. In this case we cannot use any more the 'yes-no'

answers given by aRb or bRa, for if we repeat the measurement

act several times, we may get different results contradicting each

other. The relation aRb would hold with certain probability,

approximated by the relative frequency of occurrences of aRb.

Therefore the relation R has to be replaced or interpreted as

arandan relation which takes as possible values the ordinary

relations. But then the appropriate order-homomorphism of this

(random) measurement structure into the structure of reals must

be random, too. In physics, clearly enough, classical quantities

have to be considered as randan variables, if their magnitudes are

small and the molecular or other fluctuations are taken into account.

In econometrics or in psychology, especially in preference and

utility theory, it is a well-known fact that inconsistencies may

occur in a subject's preference ordering. The reason for this is

simply that we are unable to perceive all relevant characteristics
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of the objects on which the preference is defined. Here again

the random or probabilistic relation is the appropriate notion.

A Boolean relational structure < S, R > is called a qualitative

probabilistic relational structure~ < n, tt , ~ > iff

there is a random relation R* on n corresponding to R; t:t

is the Boolean algebra over which < S, R > is defined, and .{

is a qualitative probability relation on l7t . If' we replace ~

by a probability measure P we get a (numerical) probabilistic

relational structure.

Note that qualitative probabilistic relational structures

are generalizations of ordinary relational structures. In fact,

all theorems and definitions of algebraic measurement structures

given, for example, in Suppes and Zinnes [58] have probabilistic

counterparts. We shall take one example.

DEFINITION 10 ~ qualitative probabilistic binary relational

structure < S, R > ~ < n, 't/t, 4 > is called a qualitative

probabilistic semiorder (QPS-structure) if and only if the following

axioms are valid for all x, y, z, W E S :

Vl I xRx I - ¢ ;

V2 I xRy & zRw "* (xRw v zRy) I -n ;

V
3

I xRy & yRz "* (xRw v wRz) I -n •

If < S, R> is a QPS-structure, then

(1) I xRy & zRw I ~ I xRw v zRy I ;

(2) I xRy & yRz I ... I xRw v wRz I ;
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(3) (xRy & yRz I " ( xRz I ;

(4) (xRy I '" ( yRx I

The proofs would be worked in Boolean logic and then V2 and

V
3

would be applied. In fact, the proof goes exactly the same way

as in ordinary logic, so toot there is no need to repeat it here.

Even the representation theorem goes through, if we rewrite

its proof into Boolean terms:

THEOREM 20 Let < S, R > be ~ finite qualitative probabilistic

structure ~ < n, ~ , ~ >. Then it is .!!:. Q,PS-structure

if and only if there is !! random function U: S --+ Ra *) and

a random variable "> 0 such that for all x, y € S :

( xRy I ++ (U(x) ~ U(y) + " I ~ n **)

The proof is analogous to the case of ordinary semiorder

structures. Note that ( U(x) ~ U(y) + " I ~ ((1) € n : U (x) >
(1) -

As a consequence we get (xRy I ~ ( U(x) ~ U(y) + ,,1 which

turns into equality in tt/~.

Choice theory also gets its probabilistic version along these

lines. A probabilistic linear ordering structure < S, R > is

*)Ra denotes the set of random real variables.

, then A _ B denotes AB U AB •
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represented by a probabilistic utility function U S --> Ra )

where

I xRy I ~ I U(x) ::: U(y) I for all x, y € S •

The relationship between probabilistic and ordinary relational

structures can be given nicely by the folloWing canmutative diagram:

U
< S, R > • < Ra,::: >

e 1 u 1 E

< S, Re > ------" < Re,::: >

where for x, y € s: I xRy I ~ I U(x) ::: U(y) I ;

xR Y 4==l> u(x) < u(y), and EU(x) = u(x), EU(y) = u(y),e

e(R) = R .•e

Roughly speaking, the ordinary relational structures are the

'averages' of probabilistic relational structures.

In ranking theory the well-known special sorts of probabilistic

transitivities (see J. Marschak [60]) assure, in the qualitative

version, the following form:

Let < S, R> be a qualitative probabilistic relational structure

over < n, U, ~ > and let A ~ A for some A € t;t •

Then R is called

(i) weakly transitive iff (A ~ I xRy & yRz I ~A~ I xRz I) ;

(11) moderately transitive iff (A ~ I xRy & yRz I ==!;l>

IxRy&yRz 1=(.lxRz I;
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(iii) strongly transitive iff (A ~ I xBy' & yRz" I ­

IxRyvyRz 1":lxRz I;

where x, y, z € S •

There are many interesting problems here which we cannot

discuss in this work.

5. SUMMARY AND CONCLUSIONS

'~l. Concluding Remarks

The main contribution of this work is stated in 10 definitions

and 20 theorems. We have been studying in detail and under various

conditions the properties of two binary relationi;! ~ and ~ ;

the first one on Boolean algebras, and the second one on lattices

of partitions. The results are quite general and simple, especially

in finite structures.

Our basic concern was to show toot probability, entropy, and

information measures can be stUdied successfully in the spirit of

representational or algebraic measurement theory.

The method used here is based on the most general results

of modern mathematics, which state a one-one correspondence among

relations, cones in vector spaces and the classes of positive

functionals.

The main problems, stated in Section 1.1, have been solved

in sufficient detail. In particular, we followed Scott in discussing
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the ccmplete answer for (Pl ). Answers were obtained for (p2) and

(P
3

) only in the finite case and in a special form.

AJ3 applications, we solved similar problems for entropy, informa-

tion, and autcmata.

AJ3 side problems, we discussed several conditional entities

like A/B, A/p,and (fJJ~ in a set-theoretic framework. We

studied also the basic properties of the independence relation R,
and quadratic measurement structures. Various applications in

logic, methodology of science, and measurement theory were indicated.

We have experienced the difficulties of measurement problems

in the nonlinear case. Yet, only the successful solution of such

cases is likely to persuade anyone to the importance of algebraic

measurement theory, a theory which at present is still in rather

a poor state.

As noted in Section 1.1, several people have tried to develop

semantic information theory. In the author's view, it can be very

well reduced to the standard information theory, because the set

of propositions, on which semantic information measures are defined,

forms, under certain rather weak conditions, a Boolean algebra.

We do not think that there is much of learning about information

measures on propositions, before a satisfactory theory of probability

on first-order languages is developed.' Probabilities of quantified

formulas may then give something new. Beyond that there is the

prospect of stUdying entropies in first-order theories and, perhaps,

of answering scme of the methodological questions posed by empirical



theories. But any such advances will have to be preceded by eluci­

dation of the structure of the independence relation on the set of

quantified formulas, the structure of the set of conditional formulas,

and so on. It may be that a purely qualitative approach would be

more fruitful to begin with. Concerning these problems, in this

study only the elementary facts have been stated.

The probability relation 4 is usually associated with

subjectivist interpretations. The author has tried to show that

the interpretation is unimportant; what matters really are the

measurement-theoretic properties of this relation. Because of

this, various semiorder versions of this relation have been also

studied.

5.2. Suggested~ !2!: Future Work, and~ Problems

In this work several important problems have been left open,

and others emerged during the research.

In particular .we have not given any answer to the problem of

uniqueness of probability, entropy, and information measures. In

problem (P4) we were unable to prove· the multiplication law for

the conditional probability measure.

Our study is entirely algebraic; we have not tried to introduce

any topological assumptions for the relations 4 j,;., , yet

it is reasonable to assume that the answers to problems (P
2
),

(P
3
), and (P4) in the infinite case will lean heavily on the

topological properties of ~ in tt .
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We have "been studying the structures < n, tr, ~ > and

< n, P , ~ > intrinsically; no dou"bt, mutual. relationships

between these structures have also some jjnportance in illuminating

the empirical notions of a micro- and macro-structure. Thinking

along these lines, we could consider the category of qualitative

probability structures and study their basic algebraic properties

externally.

The structures < n, U , ~ , 11. >, < n, 'a, -40
, 11. > ,

and < n, P , ~ , 11. > have not been studied enough. We do not

know, for instance, the necessary and sufficient conditions for

pairs < ~ , 11. >, < ~o , 11. >, and < ~. , 11. > in order to

be able to find appropriate probability, information, and entropy

measures , respectively.

Yet another question is to determine the conditions to be

imposed on the structures < n, ~ , ~o , 11. > and < n, p ,,{ , 11. >

to ensure that the representation by information I and entropy H

have. the more specific form:

A -J,. B ...... E+ I(A) ::: I(B) , 0 < t < + "', A, B € ~ ,

6\ ~. ~2~ E. + HU\) ::: H( f 2), 0 < t < + '" ,

f l' f 2 € P .

This question is motivated by the problem that arises in algebraic·

measurement theory when, because of errors, we have limited dis-

tinguishability.



A further general.ization of the probl.em occurs when the error,

rather than being constant, is taken as a function 6 of the event A

or experiment f .
Another probl.em is to find those conditions that must be imposed

on < n, t:t, <. , II > or < n, lP , ~. ,ll > for the probabil.ity

occurring in the information or entropy measure to have a specific

distribution (Bernoul.l.i, Binomial., Gaussian, for instance). In

this case we might hope thet the measures wil.l be unique up to some

reasonabl.e group of transformations; moreover, the qual.itative way

of proving theorems may be more straightforward.

We have not given too many details about quadratic (or, generall.y,

nonl.inear) measurement structures in physics. Yet, there are

cl.ear measurement problems connected with the representation of

such quantities for which the ll-theorem hol.ds.

Some of the questions of probability l.ogic, probabil.istic

automata theory, and probabilistic measurement theory appeared

to be important and we hardl.y coul.d touch them.

The author is cl.earl.y aware of the rather introductory character

of this study to the vast fiel.d of open probl.ems in the measurement-

theoretic approach to the notions of probability, information

theory, and methodol.ogy of science; he hopes that further resul.ts

will be forthcoming.
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