





and a special representation function V : EI ——=Re , which,

among other things, satisfies
<P, P> <, Uy>439(P) +¥(F) < W) + W)
for all ﬂl’ I:E,Z’ 6?1, éé r€ P .

There are several important partial interpretations of this

relation: First of all, the gqualitative conditional guasi-entropy

relation hopefully can be defined as
P O QY A< 1+ £y T, >3 < @, "6‘72’ >

Naturally, we can put

A <2 =< fl,ﬁ’><< Pps g >

and then the probabilistic indépendence relation _u_ on experiments

is given by

Ol Pye=< Py P> <P 5 0 >

Tt is cléar that we could also talk about positive and negative

dependence notions' similar to those introduced for probabilities.

The structure < P XP 3 % > also has independent importance
in algebraic measurement theory, where the atomic formula

< {‘) ’ Pe > A< C?l, 472 > may be interpreted as a comparison

of two empirical compositions of certain physical entities, which

is representable by an inequality between the sum of magnitudés

of a linear physical quantity. In thils paper we shall be interested
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only"in the entrggz: —interpretatibn.

DEFINITION 7 Iet @ =<0, &f < > be a FAQAP-structure.

Then the quadruple < f, [l s %’ 5 _U_ > is said to-be a Finite

qualitative quasi-entropy difference structure (FQQED-structure)

over @ if and only if the following conditions are satisfied

for all varisbles rumning over P

Dy ”:D is the algebra'gf fini‘be.'experiménts-'ové'rw 0 3 ﬂ_ i_s

the probabilistic independeﬁce re‘lafion "’6_1_1_ P a__.li(?. =3 5;? a
relation on I}:D X P 5
s fm< B P2R< Al s
D, <0, P>A<H, P>, it BE
'D5' <ﬂl’ WQ G?l’ 6?2>V< Q}_:d J‘)l’ ‘P2.>;
b, <, P,>3< c?l,a)>=><532,cg> _./"2,%_>;
Dy 'vl<n(<f c?>_<ft’ J>)==><f R ><L,q >
a”{’ i

1'1 i

wn Py
i

n 1

Qs -

by
n i<n

I/\M
II\M
I/\M

~ ~ ~ ~

'.""Where : ﬁai, K i, & _i, yi ] f:__gz‘ i = 1’ 2, oo‘o, .n
have the same meaning as in Definition 6.

The remarks to Definition 6 are relevant also to Definition 7.
The content of the definition should be clear; therefore we proceed

+o0 Theorem 16.
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THEOREM 16 (Representation Theorem) let < 9, P , <, >

be a structure, where { 1s a nonempty finite set; P is the

set of partitions of @ ; H_ is the independence relation on

in the sense of the Definition 5; gd % ij_ a relation on

PP

Then <@, P <, 1[ > is a FQQED-structure if and only if

there exists a quasi-entropy function H i P—}Re satisfying

. the following c_on@itions for all ﬂl’ PZ’ a)l’ 42 € P E
8 <P, O>R< ), Gy>8E(P) - 1P <HE) - 1A, ;

(ii) H satisfies conditions (ii) - (v) of Theorem 15.

Proof: The necessity is obvious. For éufficienc_y, let <@ ,P ,. --\{ s >
be a FQQED-stfucture over @ . ILet v/( [B) be the k-dimensional
vector space, described in the proof of Theorem 15. We can transform

P X P into a finite subset of the (external) direct sum

M B) @ WB) .by assigning to each pair < ,d> a

i;"ector 3’3 @ & € V(B) 2 mB) . We fhen proceed

almost exactljr as does‘Scott (D. Scott [11], Theorem 3.2, p. 245),

80 that the ax:l.oms D lL’ D are Jjustified. As in Theorem 15,
the normalization conditions l’ D2 will allow us to construct
a function H (which exists on the basis of D5 - D5) with the

desired properties (i) and (ii) in Theorem 16, Q. E. D.
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Now if we put
G o= Y Q< Py - Py Fy>R< 8y -y Ay >

we can easily provelthé following theorem with the help of

Definition T:

THEOREM 17 - let <0, P-, ], I > ‘E.‘? a FQQED-structure over

a FQCP-structure. Then the fbllowing formulas hold, when all

variables run over P

(1) ~ isemn equivalence rela'bion, _

@ Clp < Bl res
3y R BB, i BeE
B B LL PP

S(5) -..ﬁ/,, s did

©  C7p, % f°2//~’2 ;

D Py PP ﬂe//ﬁl ;
®) Yy p5 PSPy
) L% P fos

(10) £ o, % fl ; -
W) A= lYPRPpP
(12) f@ =1 &/f fz/f’
W) L, =LS P T

(1%) ﬁ/ﬂz fl““flﬂ-/“’e’
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(15)
(16)
(17)
(18)
_(19)

(20)

( 21)'

(ée)-

| (23)

PIP R )P £, B 1 3£y A 105 st
7, 6 La
Py Pty A= (PR s U @y R P [ 5
(£ P2 By & Fot ) =0y Potetly * @,
(fL* PRl - Ay 8 @, R0) = Pf £ 2§y & s
(P P P30y 58 Lo P52 @) —
ﬂ'fe/ﬁ;-%' W s |

PPyt A —
(P Py Py Gy s =20 @5 P55
(P Py P58 A58 Pl P35 @y by * (1) =
1P PRy Qs |
(P ey 28/ @y & 8y X RYRISPY Py R YR,

S

E@i&idi.& Vlsi<n /TTP 4, /TTCi)a—)»

j=0 3
n-1 n-1 | ,
Qn /TT QJ P /]_T(f"J where WO .
J=0 j=0 .

No more than with Definition 6 can we hope to show that

H( ﬁl/ ﬁ"e) = - s . P(AB) - _1'og2P(A/B) '  (3.10)

Ae d"“‘l,Be 07’2

without giving some further axioms to link ={* with the probability

relation % on % .
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‘It was Khinchin [40] who showed that the conditions
() BP, @) - (P =8P/ Py 5
() H(P) < we) , ar If’_l = Iél E
() H( LU () = B(P) ; |

imply the identity
CH(P) = -z P(A) * logP(A) ,
Ae
and therefore also the identity (3.10). In our case (a) is true
by definitipn, and (b) and (c) became valid by adding the following

two axioms: -

D7<pU{p}’O/ >~<ﬁ1ﬁ’ > .

Naturally C; must exist, otherwise the axiom D6 would be

vacuously true. Given that, D, --D7 imply the conditions (a)}, (b),

(¢) for finite gualitative conditional entropy relations.

3.6, Qualitative Information Structures

The readef may be éomewhat disappointed éfter reading fhe
previdus section by the very general énd rather ﬁeak naﬁure of the
results on entropy structures. It should be emphasized again; |
- however, ‘that we cannot expect simple results about fairly com-

" plicated continuous-functions in termg of re;ations on finite

domains.
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In this section, unlike the earlier cnes, we shall work with
infinite Boolean algebras; as we shall see, the results will be
somewhat stronger. We are able to give a definition of information

measure without any recourse to probabilistle notions.

The structure to be studied here is a Boolean algebra Zg '
enriched by two binary relations || and 2° ;  the relation Il

can be interpreted as follows:
A || Be> Event A is independent of event B (4, Be &% ) ,
and the < is interpreted as before:

o A B @Event A does not have more information than event B

(A, Be EL) .

The novelty here is that we give ax:i.oms. for _u_ , =¥ , and
Z which, without recourse to probébility theory, ensure the
existence of an information measure in the standard sense.

The need for a formalization of a notion of qualitative
independence to match the standard probabilistic notion has been
felt for a long time, but the author is not aware of any serious
attempts to solve this i)roblem. In this segtién wé shall try to
work out sﬁch a formalization. First, perhaps, we should turn

| fo the definitibn: |

DEFINITION 8 let Q2 be a nonempty set, 74 a nonempty family

of subsets of @ such that 1_1-_, s a Boolean algebra, and 1 a_,rlq.-‘%"

binary relations on 17 4
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Then the quadruple < @, EE ; <Re, > is called a qualitative

information structure (QI-structure) if and only if the following

conditions are satisfied when all varisbles run over b AR

I, ﬁ]i_A;

I, AlB=>3B]a;

I3 AlB=>B| a;

oI, AlB&a|lc=a]BUC, if Bl C; .
I, 24P ; |

I AP

I. A=Bv B<4;

Iy AIBEBLC=>A4C;

I, AlBealB=>(aspvBL ;.

T, A¥BesAUCEBUC, if CJ_A,B‘;

T,. A¥Be>ANC4BNC, if C| A B&cC<p;
I,, A<¥B&C<4<D=AUCSBUD, if B| D;

T IA{"lB.&C‘-‘(‘D.%PAﬂC%‘_'BﬂD, if AJLG&B_lLD_;
I, If A.ij__Aj for i#J &1, jf_n, then |

VB 3An+lvi =7 (Ai_ b : i Anﬂ)._,;
1._ If Aij_[_Aj for if-,j.&i,js.n, then

15

s HAm-lVi <n ﬂ By &8 Ap)
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Remarks:
(1)  All axioms bubt the last two, which force . to ve infinite,

are plausible enough., Axioms T b and I._ could be replaced

1 i5

by some kind of Archimedean axioms. Moreover, the reader may

find some relationship to Luce's extensive (measurement)

gystem.

(ii) The axioms can be divided into three classes: First, those
which point out the properties of ﬂ 3 secondly, the axioms
for < ; and thirdly, the interacting axicms giving the
relationship between ﬂ and < ., There is no dovbt about
thelr consistency.

(i1i) Instead of taking a Boolean algebra ct , we could consider
a complete complemented modular lattice; in which the relation
Would become a new pfimitive notion. In this case our axioms
for. L and < come rather close to diwension theory of

continuous geometry.

Tt is easy to“showlfhat Définition 8 implies.Theorem 8, 1if we
put A4 B&sB=eA (A, Belf) .

For purposes of representation we shall need a couple of
notions which will Be developed in the seguel.

et <Q, L, <& ,[|> vea QI-structure. Then ot & =
{[Alg : Ael]), where [Al,={(B: A< B} . For simplicity

we put [A] = [A]g . Now we define a couple of operations on 5f7£ :
(a) [A] + [B] = [A UB], if A1L31 and A “A&B ©3B;

(b) n - [A] = (n-2) - [A] + [A] , O - [&] = [#] ;
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(¢) [A] * [B] = [Al n Bl] , if 'Alj_L B, ‘and‘.. Alﬂ'-"'_‘A_&‘Bl ~ 'B‘;
(@ [a)% = (a7 (a1, 1a° = fo] .

12 axid‘Il3 will guarantee the correctness of the

above definitions, that is, that they do not depend on the particular

Axioms I

choice of representatives Al’—Bl' - The existence of the defined
7 ﬁgrms_ls ;mpllgd by_Ilh and 115. 7 Wéaken}ng_of the axioms Ilh
and 115 would allow us to define only partial operations + ,
SRR « o ‘ :
ne (=), *, () o Cys.
. .We put, as might be expected,

[A] < [Ble>B¥a (4, Befl ).

The reader can easily develop the algebra of the ordered
semiring R = <ys 11, [0, +, , < > .f In ';'par-.\
ticular, he can show that the operations < and ~+ .are com-
mrtative, associative, monotonic, distributive, and the zero and:

unit element act as usual. bbviously, theorems like

me* [Al<n-{Alessm<n, proﬁided_'[A]‘# 81 ; -
T {A}ns 5[A]m¢;_—,""‘> n<m, provided- [A] ?l: [Q] 5

(mtn) « [A]l =m + {A} + n « [A] ;.

[A](IH'I-TJ.) - [A]m N :jn.

« [A]" , are also true.

Our Representation Theorem for QI-structures is based on the existence

of a function ¢ rﬂ?-——-;Re- such that -
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(1) [A] < [Bleo([A]) < o([B]) ,

(11)  o([f1) = 0,

(i11) ¢(le]) = 1, _

(1v)  o([A] + [B]) = o([A]) + o([B]) , if A} B;
(v)  olal * [B1) = o([a]) - o((B]) , 1 &[] B.

There are several ways of shdwing the existence of @ :"_\D ~——>Re .

We prefer here to use the method of Dedekind cuts of ra,'tioﬁa,l' nuwbers.

In fact, the sets e = { _11111 tm* [Ul<n - [B]}] end
ek = ( %1 : [U1" < [B]"} form a Dedekind cut for fixed U elf ,

since

() me« [UJ<n- [BI¥Y n* (B} <m* [U] and

Rty B < o ey
(b) 232 < E and

sig

2
ecB&qec

B8

B

€ C

Big

* P * m P cos
B & q € CB:n < 3 by transitivity.

(e) c; = )‘D ; defines O and c;; = get of gll i'a‘cionals, defines + =« ,

The real number which is defined by the Dedekind cut ‘¢ A (cz )
will be denoted by #c A (#C:)_ . We shall define two real-valued

functions on |F\D as follows:

*
) V denotes the logical comnective 'exclusive or'
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..(1) ¢, ([U]) = u, where o<u<1 ,.
q)u([A}) =u: #‘CA .

(2). CP:,([U]) =v, where 1<v< + o,

o, ([A]) = v7a

In the following we shall omit the indices u and v in
functions cpu. and @, . |
Using the consequences of axioms 'Il - 115 » it is easy to show that

the conditions (i) - (v) hold for ¢ and ¢* . In fact,

| cp(tg]) < o[B])esu - foy < u - fopes {%_: ne[v] <m0 [4]) €

in

- f I—;: :m - [Ul<n -« [Bl}e=>[A] < [B] . Similarly things

nold for ¢, If A| B, then cp([A])+Ep([B]) =
=u °#cA+u -#cB = u-* (#cA+#cB) = n '#‘(C‘A‘*‘ cB) =
= ',#cA yp s and similarly for .

*o(1a]) = o([A U £1) = o([4)) + ([f]) , sinee B 4.

Hence, o([fl) =0 . Again, o ([f]) = ¢"(fang]) =
= *([A]) + o*([f1) =0, since P| A . 1In viewor olf] <o([2]),

we can hormalize both ¢ and cp* “by taking

[A *([a
Sy end Him ( Q] .
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Now the fact that o([4]) < o([B)e=0"([A]) < o*([B])
implies the existence of a one-one mapping n [0, 11 =10, 1]
such that 0¥ =1 6 o . | | |

Since [A] - ([B] + [C]) = [A] - [B] + [A] - [C] , we get
e([4] « ((B] + [C]) =o({A] « [B]) + o{[A] - [C]) , anmd so also
n"H*([A1) - *([B] + [C1)) + n" (g ([A]) * ¥([B])) +
+n7HeMIAD ¢ 9*([e])) .

For A% Q we get | 7 _

nTH@H(IB]) + o*([C]) = n”H@*([B1)) + n"H(eF([C])) .

But this is the Cauchy functional equation for n"l -in the

real interval [0, 1] . Using the standard method of solution

of linear functional eduations, we.get .n_l(¢*([A])) =.a . ¢#([A]) s
where «a 1is a real positive constant. The normalization of ¢

and ¢* gives finally ¢*([Al) = @([A]l) for all ([A] e %/-3 .

We can now prove

THEOREM 18 (Representation Theorem) let < &, ££, éQf,.ﬂ > be

a QI-structure. Then there exists a finitely additive probability
measure P om 22 su_ch 13131; < Q, ZZ-, P> .i? a probability
space, and

(1) A%B&=I(a) < I(B) ;

(2) Al B==>1I(an B) + I(a) + I(B) ;

(3) I(8) = - logP(a) .

Proof: We put P(A) = o([A]l) for A e & . Then from the
previous discussion of ¢ it is easy to see that (1) « (3)

are satisfied.
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Clearly all the axioms I, - I are necessary condltlons

1 13

for the existence of the information measure I. Axioms Ilh
and 115 are not pecessary. We 1eave open the prdblem of formulating
axioms both necessafy'and éufflclent for the exlstence of the
meastre T.

. Aware of the relatively complicated hecésééﬁj éﬁd:sﬁ}ficient
conditions for the existence of a prébabiliéj méagﬁré“ih.ﬁﬁ infiﬁite
_ Boolean algebra thJ{ ‘the author will not go here into further..
'details. ' | | “ -

T I(a) = -'log P(A) 1s called sometimes as self—information

of the event A. The next (sllghtly more general) notlon is the

so-called conditional self-information of event A, glven event B:

I(A/B) = - 1ogéP(A/B)“;' A Purther géneralizétion leads to the

conditional mutual information of events A and B, given event C

oo P(ABICY .
I(A:B/C) = log, P(A/C){P%B/C_) .

Naturally, we would like to give representatlon theorems also
for these more ccmpllcated measures, | o

In this last case, our basic structuré would bé‘fhé.séflof
complicated entities A: B/C A, B, Ce Zﬁf ﬁ-J.C) ‘and two binary
relations ﬂ and ‘$ _on this set of entities. In fact, it would

be enough to c0n31der the formulas Al Bl/C * A B2/C angd .

A/G\ IL. B/C - sinceethe;remaigdgr.can‘be,defined as follows:
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A:B <% C:D e A:B/0 < C:D/Q ;
A%ﬂBﬂA:A&B:B.;

CA/B¥ /DepAtA/BLC:C/D ;
Al B@A/Q_H_B/Q , where A, B, C, Def .

Some of the properties of the gqualitative conditional mutual

information relation <* are analogous to those of the gualitative

self-information relation. For example,

(4,:0,/E, & AE:(:2/}32'&-'Bl:Dl/El & Ba:De/Ee) => A B chl/El 4wA2132:02D2/E2 s
ir A/E | B/B scym | /e & aBy/e ey, 1-1,2.
o Wé do not intend to develop further details here, because of
the rather complicated nature of these prqpertie;._ Note that we
have several notions interacting here: conditional events, the
independénce relation, and the.mutual information relation. From
the point of view of algebraic measurement theory the problem is
to give measurability conditions for very canplicated relations

defined on the above-mentioned complex entities.

h,  APPLICATIONS TO PROBABILITY LOGIC, AUTOMATA THEORY, AND

MEASUREMENT STRUCTURES

4,1, Qualitative Probability Logic

In methodolegy of science, inductive logic, and in philosophy.

generally, it is customary to consider the probability of statements

rather then the probability of events. But even in the field of
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applied probability theory we quite often appear to speak of
probabiiities,of gtatements rather than of sets. For example,

ﬁe talk about the probability that the 'random variable ¢ is
.ﬁot greater than the random variable n ,' instead of taking the
pfobability of the set {cp e_fz' : t{w) <n(w)) . This case, indeed,
.is nothing to worry about, since_the appropriate translation from
statements into events is immediately obvious, The main problem
comeé in.when we want to talk of the probability of a statement.
containing,quqntifiers, -The”standard probability space,éﬁ\nz g

= < 9? 5?5, P > takes care at best only of the countable cases,

50 ﬁha‘c the logical operations ]x s \V_/x . are often not adequately
.repfesented by the og-operations in Zﬁt 5 especially, when x rumns
_.§ver aﬁmuncountable domainr_ Consequently, the problem arises of

hoﬁ to assign a reasonaﬁle probability to quantified statements.

The basic idea, following Scott and Krauss_[20], is quite simple.

We turn the Boolean algebra er, given in [ﬁ\ s into a complete
Boolean algebra by teking the quotient %/AP_ ,. modulo the
g-ideal E,ZSP of setg_qf measure zero. Then arbitrary Boolean
operatiops are admlitted. In addition, P turns into a strictly
‘stifive measure on 5?7 £§P « Therefore, 1f we assign homo=
mérphically'to every first-order formula an element of ZQV‘A;P , no
frouble will arise from using any sort of quantification., This should
_be clear enough. But the trick is not so innocent! Since Z%O’z;P

satisfies the countable chain condition, all Boolean operations
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actually reduce to countable onesj; therefore the quantified formulas
will get probabilities regardless of whether they are defined on

a counteble domain., Clearly some big Boolean algebras may be needeqd.
But then we may not be able to guarantee the exiétence of a probability
measure: Probability with values in a non-Archimedian field still
may exist, but fhen we are faced with a problem of interpretation.
In the suthor's opinion, the problem can be solved by considering

a qualitative probability structure <, £Z, | > for which,
eventually, we will be ﬁrepared to give up the validity of the _
representation theorem. In fact, the formula A4B for A, Be Z£
has a perfectly good meaning or content in the above-mentioned
fields, be it representable by a probability measure in the sense
" of problem (Pl) or not. In ﬁarticular, é%t can be arbitrarily big,
if needed. What matters now is only an apprOpriéte way of assigning
Boolean elements to formulas.,

For this purpose cousider a first-order language aC:=

= -<V,F,P,-—-,'v ,&,@,4—;, \7’, 3 >, where V
denotes the set of variables x, ¥, 2, V, Wy, .ss, F the set of
functors, P the set of predicates, and the'remaining symbols

stand for logical comtiectives and quantifiers in the usual way.
Simplifying the problem, without losinglgenerality, we shall con-.
gider just one two-place functor o ¢ F and one binary predicate
peP, We define recursively first-order.formulas over L
“in the well-known way. If needed, we may include among the logical

symbols also the identy predicate = ., We shall introduce Boolean
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models as probabilistic intended inbterpretations of 'df e The aim
is here to replace the ftruth values of ordinary logic by values in
EE; then a formula is valid if it has value O , and invalid if
it has value P . The various 'truth values' are_orderéd by the
gualitative probability relation < of the quaiitative probebility
structure A =<0, £% , 2 > wvhich will be held fixed throughout

this section.

A nonempty set .8 +together with a mapping = : 8§ X & —» &
is called a Boolean set (JA -get) if and only if for all a, b, c e S

(1) | [a=a] =0 ;

(14) Ja=b -~b=al =0,
(iii) [a=bNb=c »a=cl=0, where a=Db = =(ab) .
We could think of several mappings = on S , and they would

.yieid different Boolean identity relations on 8 . If there is no
danger of confusion we shall use S +o refer to the struecture |
<8, => ,' and S, Sl,_Sg, ... will be varisbles for Boolean
sets. Hence, roughly speaking, a Boolean set is just an ordinary

set in which the natural identity is considered in terms of a

Boolean-valued logic.

* -_— .
) If A, Be ?£ , then A -»B denotes AUB . There
should be no confusion with the mapping f from A into B:
f:A—-)Bc
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If = denotes the striet equality = and C& 1s a two-
element Boolean algebra, then < S, => is equal to S .

Amapping R : 8§ X 3 —~»Re 1s called a Boolean binary relation

(A -relation) iff for all a, b, c, d € §
[(@=eNb=4a) —(akb —cRA)] = Q,
~ where aRb = R(a,b) .

It should be clear how one could define more general relations.
A Boolean relation R , defined on a Boolean set 8 , forms

a Boolean relational structure (A -structure) <8, R>,

Amapping £ : S X858 —=8 1is called a Boolean binary operation

( A -operation) iff for all a, b, c, d € S
“[las=eNb=4d) -7f(a,b)=fle,d)] = Q.

Tt is immediately clear how one gives a definition of Boolean

“ functions.

A Boolean set S, together with a Boolean relation R and a

Boolean operation f on it, defines a Boolean structure <S8, R, £ > ,
Now we are ready to interpret the language A ina Boolean
structure < S, R, £ >, and give a definition of the qualitative

probability formula ¢1f% @2 ; Wwhere O @2 are formulas of &L .

1’
We give values to variables X, ¥, Z, s+ ©of V in the
Boolean set S ;3 @ will denote a Boolean operation f in 3

and p will denote a Boolean relation R on S . Having done

this, we get a possible Boolean model e = < 3, R, £ > for L .
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If the values of x,y are’ X, ¥ €8, " then the value of the -
term @ x y is f{x,¥) .+ It is obvious how to extend this
definition recursively to all terms.

*
Now the valuation [ | ) of formulas of L _one)ﬂ

into L€ is defined recursively as follows:
(i) [ p'url"c‘2 b, = T_lR 72_, in pa‘.r"tl_cular, [T = 1. =

. L4
= T = T

1 2%

(i), . I=~0 ly': To ]a}p 5
(1ii) 'l'-'cbl‘-v’ o, ]a,,‘ = [ o ]Q), ule, lJ, PO
(iv.): | [Vx <I> !f .= N1 ‘PI(a)-. !f’ , | .if ‘D'(a) =. .[x.l..a]%p: ’ .

- 8es

where 'I.'l,h"l'.’ ’ 't‘ienote termé, d, &

5 1 d>2 _formulésl of £ , ‘and

[x!a]cb is a substitution operation in the metalanguage of oC .

We can put

o "{afé_@e%l?l elf-& I<1>2, ly ’

as follows: . formula - @

. and interpret o, =3\J, o) , in the model of

2.
is not more probable than formula ,@2 .
- Considering all possible valuations { !f - we may define

2,2 ¢, e | 0 Ef% [d)e'%f, "Ifor all ./ ,

and obtain a gualitative probability structure of first-order formmlas

< F , =% >, in vhich, hopefully, the mentioned methodological

*)

This ingenious notation is due to Scott and Krauss [20].
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problems of empirical sciences can be studied.
. Bometimes we start with a first-order theory _7/ and take

the class of all its models “\/I . Then clearly

@e,‘]’..,.[q:!ya-sz for all fe Mj"

Note that in a qualitative probability structure of formuias
< |]-— s % > we are given é priori a fixed structure A =
= <Q, 53, 4 > ;. and in the case of < F, <J’ > two
structures, A  and c)o . 'The choice of Qf is given by

empirical interpretation, but it is not clear, on the basis of

which criteria should we choose A .
One way of answering' this question would be to associate

with R a random relastion R* , that is, a mapping

R¥ : @ —— .ﬁo(s_ x 3) ,*) for which
\V{a,bes[_[m : aR&*}b} el 1.

The random relation RBR¥ 1is a random varisble which takes as
- possible values ordinary relations on S . . Now the randomization

may be dictated by the empirical interpretation. In particular,

we may be Torced to take & special & , and ZZ will be given

by the conditions of observation, The subtlety of the events we

: )If ‘A is a set, then .f (A) denotes the set of subsets of
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can observe will motivate us to choose an appropriate algebra
from the lattice of algebras over {0 ; ordered by the finer-than
relation: (#] € /4, . Finally, the probability relation =%
is given by the random mechanism of R¥, If the randomization
of R dis not possible, we have to choose Ja\ subjectively.

If <, ZZY, ﬂi > 1is a qualitative conditional probability
structure, then we can define the qualitative conditional probability

relation on formulas from Ef' as
o -_{ : ‘ :
‘I’l/q’e"_‘_l_fl/‘ye_ I‘I’l’/'q’e"‘"wll/_'we['

If we proceed in the same way as above and take a semiordered
gqualitative (conditional) probability structure, we can define
notions like acceptability, rejectability, and the like, If needed,
‘we can remove the condition that th be a Boolean algebra, . and
considef A as a lattice.

We shall not develop any specific details of these notions

- here.

4,2. Basic Nobtions of Qualitative Automata Theory

In this section an application of qualitative probability

" structures to prdbabiliétic automata.theory will be presented,
Automata théory.is considered as a part of abstraﬁt algebra.

Determiﬁistic automata theory is a vefy well developed discipline,

whereas probabilistie automata theory is still at the beginning

stage. An excellent review qf the subject can be found iﬁ

R. G. Bucharaev [59].
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Probabilistic automaba represent empirical discfete systems
in which statistical disturbences (noise) or uncertainties: have
to be taken into account. It is assumed also that the system has
two channels: the output end transition channels. |

From a formal point of view, a probabilistic automaton is
a many-sorted structure*) <=z 8, £, H> ,. where =, @, £ are
finite nonempty sets (the set of inputs, the set of outputs, and

the set of (internal) states) and H is a conditional probability

function assigning to each 'conditional event' (0,8")/ (e,s)
(where 0 €@, ec=, and s, s'e¢ ¥} the probability that
the automaton transits to state s aﬁd produces output C, given
~that the automaton is in state s with input e.

Fram a purely conceptual point of view, instead of taking H
to be a mepping as above, that is, H : Z X I —. (e x ), where
QEXG X £) denotes the set of probabilistic distribution functions
over O X I, we can consider H to0 be a more general sort of
mapping. In particular, we call the automaton < =, &, I, H>
Boolean if H : Z X & —> %6 X £, vhere [ is a Boolean
algebra.**) Then H((0,s')/(e,s)) = the Boolean (truth) value of
the statement that the automaton transits to state s' and produces
output o, given that it is in state s with input e. In the Boolean

algebra sz we can have a qualitative probability relation =$ »

¥
) By a many-sorted structure we mean a structure which has
several different domains (universes).
**j B
If A and B are sets, then A denotes the set of mapplngs
from B into A.
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and therefore we can consider the qualitative probability:formula
(Ol,si)/(el,sl)=%.(02,sé)/(e2,32) (0g, 0, €8, e e; e,

815 815 Sp sé € ©) with the obvious interprétation. Sirce we

- would not want to bother about the meaning of the algébra fo B

we shall proceed 1n a more stralghtforward way, namely, by rep1301ng
the function H by a qualltatlve probability relation, For this
. purpose, we have 1o consider input events (take Jjust the elements

of _K?(E)) and state events (take the elements of _KP(E)). More

specifically,

i l’ 0, e_ﬁ?(@ e e2 €=, 84, 8) E‘XED(Z), |

o ?j 8, € I, then (Ol,S )/(e ,s ) R (02,8 )/(e +5, )4h>

s
{4.1)
the output event Ol and the state event Si given
Anput ey .ggd state 8, are not more probasble then the

output event _O2 and the state event .Sé given input e,

4_and state 52 .

This is the intended inferprefatién which we shall deal with,
First comes the definition

DEFINITION 9~ A many-sorted structure < I, 6, 5, * > is

called a finite qualitative probabilistic awtomaton (FQP-automaton)

1f and only if the following conditions are satisfied for all

variables running over appropriate sets as explained in (k.1):

0

M Z, ® and ¥ are finite nonempty sets (input, outﬁut, and

state sets); and =% is a binary relation on

15



B ) x‘jsz) X Z X £ , where the formula generated by =

is written as in (k.1);
M (B, (egs8) 3 (8,2} (ey8,)
M, ($,8)/(e},8,) R (0,8')/(e,,s,) ;
M, (0,,81)/(e,8,) & (0,,88)/(ey8,) v (0,,81)/ (ep,8,) 2(0),81)/(e1,5,)5
'Mu Vi < n[(o.i’si)/(ei’_‘?’i) ) (3,81)/ (e}581)] |

.(Oi,si)"_/ (ei’si) =

(Qn’sﬂé/(eﬁ’sﬁ)Fi (On’sn)/(en’sn)' 1L i g n

1
™

LE (@581 / (e¥,s%) .

We have mentioned many times that the characteristic function
occurring'ndw in Mﬁ,'cah aiways be eliminated. To be compietely
clear, wé'put {(O,S)“/el,sl](o,s) =1 iff oeO&s eS8,
otherwise zero. After those experiences obtained from mahipulations
with probebilistic relational structures, we might suspect that
this definition is just'the 'qualitative version' of the standard
definition of p:obabilisticnautomaton. In fact, the fdllowing

theorem can be eagily proved.

THEOREM 19. Iet <Z, 0, 5, & > be a many-sorted structure,

described by axiom M in Definition 9. Then it is a FQP-automaton

if and only if there is a function H: ZxZ—d&(@x5) suh

that < Z, ©, %, H> is a probabilistic automaton (especially,

H((o,s')/{e,8)) 1is non-negative and 5 H((o,s‘)/(e,s)) =1),
L . .  0e® - o '
s'ex
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and (011 Si)/(el’sl) %(Oe:sé)/ (82: 52)@1{((01:5:1)/(‘91:31) £
< Hl(opsp)/ (eprs,)) - |

Teking H in the probsbilistic automaton { =<3, @, %, H>
to be a special function, we obtailn, amongst_others,-the following
classes of automata:

(1) C is called a Mealy-automaton irf H((o0,s')/(e,s) =

= H(o/(e,s)) . H(s'/(e,s)) .

(i1) C  is called a Moore-autamston iff H(o/(e,s,s')) = H(o/s') .

(111) (C is called a probabilistic automaton with random output

. and deterministic transition iff.

H(s'/(e,s)) =1 s if zgf[s' =.f(e,s)] s and zero otherwise.

(iv) "(:_ is called a probabilistic automaton with rendom transition

- and. deterministic output iff

H(o/(e,s)) =1, if .:gf[o = f(e,s)] , and zero otherwise.

A special case of,ﬁhe_Mbore—automaton.is the Rabin-automaton

<= %, ¥, H> where Y ={s5:8 ¢ &g(s) =1}, where g is
a mapping from. ¥ to © .
The qualitative version of these automata is quite obvious.

' In the case of Mealy-automata we have to require that o/(e,s) || s'/(e,s);

and the appropriate axicams. can be stated easily by using the results
of Section 2.6 on qualitative conditional probabilities. Similarly,

the Moore-automaton is specified by the requirement: ofs! ﬂ (e,8)/s" .
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Notions like subautomaton, isomorphism and homdmorphism of
automata, reduction of states, direct sum and temsor product of
automata, are quite easily defined. Since we are not going to
develop any specific theory about the properties and mﬁtuéi relaw
tionships of.those notions, we shall not give any further definitions.
‘The notion of the event x realized by gualitative probabilistic
auvtomgton is also easy to define.

If somebody wants To study semiordered qualitative probabilistic
automata, he is welcome to do so. All obvious combinations of these
notions are hardly supported at the present time by any empirical
problem. On the other hand, from a theoretical point of view,

they represent a good source of mathematically interesting theories.

4.3%. Probabilistic Measurement Structures

The notion of a relational sfiructure is fundamental in most
current empirical theorieé. Various ordering structures furnish
the‘common idealization of a large number of mathematical, physical,
behaviofal, and other scieﬁtific conceptual structures in which
the notion of a relation occurs. However, in numerous instances
in which these relational structures are applied, the situation
or the problem is rather over-idealized. This is evidently the
case, for example, in measurement., If the relations are determined
by experiment or observation, undoubtedly they must be supposed to
. depend on chance. In repeated experiments or observations (under

fixed conditions) we do not get unvarying results, because  of
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‘noise,' an unavoidable phenomenon with statistical strugture.

For instance, it is quite common to deséribe the measurement of

ﬁéighﬁ of a given set of objects using an equal-arm balance system

by a binery relafional formula a Rb (object a is less heaVy.that
object b). Thié method is completely correct if the weight-difference
of objecté a and b is essentially greater than the friction in the
Ealance system and the statistical disturbance factors. But in

the case of precise measurement with relatively small wéight—differences
the relation R would ﬁot serve as an adequate notion for the meas-
urement problem. In this case we cannot use any more the 'yes-no'
éﬁswers giﬁen by aRb or PRa, for if we repeat the measurement
égt sevéral times, we may get”different resuits éontradicting each
6£her. The relation a R b. would hold with certain probability,
approximafed by the relative frequency of occurrences of a R b .
Therefore the relation R has to be replaced or interpreted as
“a.randam relation which takes as possible values the ordinary
" rélations. But then the appropriate order-homomorphisﬁ of this
(random) measurement structure into the structure of reals'must.
be.randam, too. In physies, clearly enocugh, classical quantities
have to be considered as randam variables, if their magnitudes are
small and the molecular or other fluctuations are tsken into dccount,

In econometrics or in psychology, especially in preference and

utility theory, it is a well-known fact that incqnsistencies may

occur in a subject's preference ordering., The reason for this is

simply that we are unable to perceive all relevant characteristics
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of the objects on which the preference is defined. Here again
the random or probabilistic relation is the appropriate notion.
A Boolean relational structure < S, R > is called a gqualitative

probsbilistic relational structure over <&, &£, & > 1iff

there is a random relation R¥ on § corresponding to R 3 22?
is the Boolean algebra over which < 8, R> 1is defined, and 4

' is a qualitative probability relation on I/ A . If we replace <

by.a probability measure P we get a {numerical) probabilistic

relational structure.

Note that qualitative probabilistic relational structures
are generglizabions of ordinary relationél structures.' In faét,
.all theorems and definitions of algebraic measurement structures
‘given, for example, in Suppes and Zimnnes [58] have probabilisﬁic-

counterparts. We shall take one.example.

DEFINITION 10 A qualitative probabllistic binary relational

structure < S, R> over <@, ¢¥Z, 4 > is called a qualitative

prdbabilistic semiorder_(QPS—structure) if and only_if the following

axioms are valid for all x, y, 2, w e 5 :

v, lxRxl~g;

1
v, [ xRy & zRw = (xRw v zRy) | ~ Q ;
'Vﬁ'“ | xRy & yRz = (xBw v wRz) | ~0 .

If <8, R> is a'QPS—structure, then
(1) I xRy & zRw 1L [ xBwvzRy | ;

(2) IxkRy &yRz 14 [ xRwv wRz | ;
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(3) xRy &yRz 1€ [ xRz ] ;
W) [xry 14 yBx ).

- The proofs would be worked in Boolean logic and then VE and

-,VB would be applied. In fact, the proof goes exactly the same way
as in ordinary logic, so that there is no need to repeat it here.
- Even the representation theorem goes through, 1f we rewrite

its proof into Beoolean terms:

THEOREM 20 Iet <8, R> be a finite qualitative probabilistic

structure over <@, ¥ , > . Then it is a QPS-structure

if and only if there is a random function U : S ——Ra ) and

a ranfom variable N > 0 such that 'fﬂ' all x, y e. S:

Uyl e [0 200 +ad~a )

The proof is analogous to the case of ordinary semiorder
structures. Note that [ U(x) > U(y) +n 1= {we@: Uc'n(x) >
> uly)+s)ell . |

As a consequence we get [ xRy 1 ~ [ U(x) > U(y) + r;-l which
‘turns into éqﬁélity in %/'v . o B

Choice theory also gets its probabilistid version ualong tﬁese

lines, A probabilistic linear ordering structure < :S, R> is

%)

Ra denotes the set of random real variables.

*E ‘.-_.
)If A, Beltdl , then A<>B denotes AB U AB ,
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represented by a probabilistic utility function U : 8 — Ra,

where

lIxBy|~lU(x)5U(y)| for all x, y ¢ 8.

The relationship between probabilistic and ordinary relational

- structures can be given nicely by the following commmutative diagram:

U
<8, R> -+ < Ra, < >
e . . : E
u
<8, R > - < Re, < >

where for x, yeS: IxRy l~10(&)<Uuy)1;
Ry <> ulx) < uly), and EU(x) = ulx), EU(y) = uly),

e(R) = Re‘ .

Roughly speaking, the ordinary relational structﬁres are the

'averages' of probsbilistic relational structures, |
- In ranking theory the well-known special sorts of prdbabilistic.

transitivities (see J. Marschak [60]) assure, in the qualitative
version, the following form: _
riet % S, R> be é éualitative probabilistic relational structure
over < 9, £#, % > and let A~A for some.Aew .
'i‘hen R is called |

(1)  weakly transitive iff (A4 | xRy & yRz L =>A< [ xRz 1) ;

" (ii) moderately transitive iff (A< | xRy & ¥Rz | =»

[ xRy &« yRz | $ [ xRz | ;
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(1ii) strongly transitive 1ff (A< | xRy & yRz | =
lXRyVYRZI%‘[x.Bz]; s

where x, ¥, z € 8 .

There are many interesting problems here which we cannot .

discuss in this work..

5.  SUMMARY AND CONCLUSIONS

551, 'Concluding Remarks

The main cdntribunion of this ﬁork is sﬁened in 10 definitions
and 20 theorems. We have been studylng in detall and under various
conditions the pr0pert1es of two blnary relations =%. and ‘& ;
the flrst one on Boolean algebras, and the second Ore on lattlces.
of partltions.' The results are qulte general and 31mple, espeolally
in finite structures. | | |

:Onr basio'concern nas to shon.that”probabiiiny; entropy, andr
'llnformatlon measures can be studied successfully 1n the sp1r1t of
representatlonal or algebralc measurement theory.

The method used here is based on the most general results
“ of modern mathematlcs, which state a one-one correspondence among
'relatlons, cones in vector spaces and the classes of pos1t1ve
functlonals."' . | 7

The main probiems,'snateé in Section l.i, heve‘been‘solred

in sufficient detail. In particular, we followed Scott in discussing



the coamplete answer for (P Y. Answers were obtained for (P2) and,
(P ) only in the finite case and ina special form. -
As applications, we solved simllar problems for entropy, informa-
tion, and aubomata.
As side problems, we discussed several conditional entities
like A/B, A/P, and ﬂi/f; in a set~theoretic fremework. We
studied also the basic properties of the indepéndence relation 'ﬂ »
and quadratic measurement structures. Various applications in
. logic, methodology of science, and measﬂrement'theory were indicated,
We have experienced the difficulties.of measurement problems
in the nonlinear case. Yet, only the sucoossful solution of such
“easés is likely to persuade anyone to the importance of algebraic
Mmeasurement theory, 8 theory-whlch at present is still in rather
a poor state.
As noted in Section 1. l, several people have tried to develop

'uéemantic information theory. In the author ] view, it can be wvery

well reduced to the standard information theory, because the set

of propositions, on which semantic information measures are defined,
forms, under certain rather weak conditlions, a Boolean algebra.

We do not think that there is much oftlearning about informstion
measures on propositions, before a.satisfactory theory of probebllity
on first-ordef longuages.is developed:'_frobabilities of quantified
formulas may then give something new. Beyond that there is the
prospect of studying entroples in first-order theories and, perhaps,

. of answering same of the methodological questions posed by empirical
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theories. But any such advances w1ll hawe to be preceded by‘eluci-
datlon of the structure of the 1ndependence relatlon on the set of

| quantlfled formulas, the structure of the set of condltlonal formulas,
and 80 or. It may be that a purely qualltative approach would be
more fruitful to begln with., Concerning these problems, in this
.study only the elementary facts have been suuted. _

The prdbability relation =$ is usually associaued with
subjectlvist 1nterpretat10ns.. The authcf has tried to show that
the interpretatlon is unimportant; what matters really are the
measurement-theoretic prqpertles ofrthis relation. Because of
uhis, vurious séﬁiorder versions of this relutiqn huve been also

éﬁudied.

5.2, Suggested Areas for Future Work, and Open Problems

"~ In this work several important problems have been left open,
and  cthers emerged during the research.

In particular we have not given any answer to the problem of
uniqueness of probability, entropy, and informstion measuwres. In
uroblem.(Ph)_we wure unable tp prove the multiéliqution law for
the conditional probability measure.

Our study is entirely algebraic; we have not tried to introduce
any topological assumptlons for the relatlons ‘{ “l 3 yet |
it is reasonable to assume that the answers to problems (P ),7
'(PB), and (Ph) in the infinite cage will lean heav;ly qu th?_;: .

topological properties of ’\{ in % .
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We have been studying the structures < Q, ﬁﬂf, 4 > and
<:9 F) ‘( > intrinsically, no doubt, mutual relationships |
between these structures haye also some importance in illuminating
the empirical notions of a micro- and macro-structure. Thinking
along these lines, we could consider the category of qualitative
probebility structures and study their basic algebraio properties
externally. B ” |

The structures <, o, 4, 1> ,7.<Q, o, 4, |>,
and <9, P, <, | > have not been studied enough. We do not
know, for instance, the necessary and sufficient conditions for
pairs <R, l|_> <L,]l>, " and <% _[|_> in order to
be able to find appropriate probability, information, and entropy
measures, respectively.

Yet another question is to determine the conditions to be
imposed on the structures < Q, £¥, & , | > and <9,|P 2, >
" to ensure that the representation by information I and entropy H

have the more specific form:

ALB <= £+ 1(a) < I(B), 0 < £ < +a, A, Bel,

"(Pl-’.-{f’e@' £+'H(cPl) 5" H( goe) , 0<E< +a,
{fl" J)EG_P."

This question is motivated by the problem that arises in algebraic -
measurement theory when, because of errors, ve have 11mited dis-

tinguishability. | S,
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A further generalization of the problem occurs when the error,
rather than being constant, is teken as a funetion & of the event A
or experiment JD |

Another prdblem is to find those condltions that must be imposed
on <0, %, ,1> o <a, P, s L > for the provability

| occurring in “the 1nformat10n or entropy measure to have a specific

distribution (Bernoulli, Binomial, Geussian, for instance). In
fhis case we might hope that the ﬁeasures will be uniéue up to some
reasonable group of transformatlons, moreover, the qualltative way
of proving theorems may be more straightforward.

We have not given tco many detalls about quadratic (or, generally,
ponlin_ear) ineasu.fement structures in phys.ics.'. Yet, there are
clear measuremént problems éonnecﬁed wifh the representaxioh of
such gquantities for which the x-theorem holds,

Some of the questions of probabllity loglc, probabilistic
automata theory, and probabilistic measurement theory appeared
to be 1mportant and we hardly could touch them.
| The suthor is clearly aware of the rather introductory character
| of this study to the vast field of open problems in the measurement-
theoretic appreach to the notions of probability, information
fheory, and methodologj of sciehce;'he.hcpes that further results

will be forthcoming.
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