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deal more variability in this data than in Experiment I. (There are only
90_observations rer point in Experiment II as compared to 300 in Experiment T.)

Table 8 shows the parameter estimates, mini_]_:;um"ﬂ2 values, and the mean
X2_ components per point for both experiments. The fact that this mean is
somevhat lower for Experiment I than for Experiment IT indicates.that the
f;rst experiment is better fit than the second. If the initial guessing
trial is ignored, the mean X2 component for Experiment I is .97 and 1.22
for Experiment II. Hence, the first triasl, on which it is assumed that the
- subjects guess randomly, contributes substantially to the value of ﬂg,
particularly for Experiment IT.

In the discussion of Ex;perinient II in the previous chapter (III, p. 33),
éhance fluctuations were suggested to account for the diSCrepancj between
the expected and observed ordering of probabilities of an error on trial b4
'of:sequénces 17, 18, énd 19. It was expected that seguence 17 would have
iﬁhe fewest errors and sequence 19 would have the most. This expectation
was based on observations of triasl 4 in Experiment I. On that trial, those
items with longer initial lags following a long lag had fewer errors than
i‘ﬁems with shorter initial iags. Since the modified GFT has the same ex-
pected ordering it 1s relevant to note that its mean X2 component for
trial 4 of these sequences (from the parameters iﬁ Table 8) is .96. This
is much less than the X2 component éveraged over the whole experiment.
Therefore, the contention that chance fluctuations account for the lack of
appropriate ordering is not unreasonable.

Additionsl statisties which are often useful in evaluating fits of
Markov mcdels to frequency data are derived from the distribution of the
.trial of the last error. For the data of Experiment I, the parameters
estimated from the learning curves were used to generate the predicted
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values of this distribution. It should be noted that since only six
trials were run on each item in this experiment, the fact that a subject
made his last error on trial X does not mean that if more trials had
been run he might not have made more errors, but rather, that the subject

- made no more errors in the six trials presented. Thus, the theoretical
probebility of a last error on trial 6, for example, is simply the prob-

- ability of an error on trial 6. Figure 9 shows the predicted and observed
proporticns of subject-item protocols which had their last error on each
of the six trials for each of the eight sequences. A last error on trial
0 1indicates that the subject made no errors on that item. The priwary
discrepancy between the predicted and observed distributions is too fre-
guent occurrence of last errors on trials O and 1, and too few on later
trials. This discrepancy'would be expected if the assumptions concerning
_ item dr subject homogeneity were viblated, or if, as suggested iﬁ Chapter
' I1I, there were a variation of parameters within subjects during the course
of the experiment. In any case, the discrepancies are not large, and some
subject and item differences nc doubt exist.

A statistlc which has often been used t0 ‘discriminate between the
incremental and all-or-none guality of freguency data is the probability
of an error on trial n, given an error on some trial greater than n.
Table S shows a comparison between the predicted and observed values of
this probability for each of the eight lag-sequences in Experiment I.

' The most striking discrepancy bétween the predicted and observed values

is the conéistent tendency for the oﬁserved probabilities to fall above
those predicted by the model. This discrepancy, too, may be a function of
subject or item inhomogeneity. For example, when a statistic is con-
ditionalized on an error occurring, the subject item protocols included
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Trial No. Obs

Seg. No.

1

2

= W

e 3 O o\

TRTAL O

PROBABILITY OF AN ERROR ON TRIAL E- GIVEN

AN ERROR OCCURRED ON A TRIAL GREATER THAN n.

2 3 4 5.

Pred lag Obs: Pred Iag Obs Pred Lag Obs Pred  Lag Obs Pred
69 .67 10 .55 .48 10 .52 b6 10 .50 .46 10 .ﬁ? iy
6T .67 10 .51 .49 10 .51 .49 1 .23 .21 1 17 0 .11
.66 .67 6 .51 bo 6 45 .35 6 .39 3L 6 .25 .35
67 .67 6 .63 .ul 6 .45 .38 1 .36 .17 1 .35 .10 .
70 .67 5 6 .33 3 .o .2k 3 32 .2 3 .35 el
70 .67 1 .33 .25 1 .20 .11 10 .5L .41 10 .47 .46
LTh .67 1 oo 25 1 .21 .12 6 A5 .30 6 .51 .34
76 6T .35 .28 I .15 .1k 1 .08 .10 1 .09 .08



in that statistic might well be from.subjects with a lower than average
value of _g. The effect of this would be a higher over-all forgetiing
rate and consequentiy more errors evidenced in thésé stétistics. It is
interesting that there is almost no tendency for the predicted and observed
_ values to cross. Instead, the observed curves have much the same shape as
those predicted by the model. This is important with regard to the incre-
mental versus all-or-none interpretation of the data. If learning were
incfemental, that is if strength were being built up on éach successive
reinforcement, the observed values would be expected to decrease relative
to those predicted from the model. The intuition behind_this assertion
can be understood from the fact that for the modified GFT an item which

is not yet learned is either in S or F. Hence, the probability of an
error on guch items is diffefent-from chance only bhecause of short-term
effects. An incremental model, on the other hand, must aillow for an im-
oprovement over and above that attributable to short-term effects, even on
items not yet fully learned. Thus, despite the fact that the actual pre-
dicted values are somewhat low, these data still support the basic all-or-

none assumption of the modified GFT.

Theoretical Tatency Analysis

The close relationship between the latenclies and error frequencies
discussed in the preceding chapter strongly suggests that the latencies
and error probabilities ﬁere generatéd by similar processes. It therefore
is natural to append latency assumptions to the modified GFT, which already
gives an account of the error frequency data, to attempt to account simil-

taneously for the error frequencies and, at least, the mean latencies.

5k




It seems reasonable that, even after an item is learned, responses
following a.short lag would he faster than those following a ionger lag.
To incoporate this idea into the modified GFT, it is necessary to separate
the learned state, L, into two states, one from which the subjects respond
guickly, denoted L&, and one from which they respond more slowly, L.

It is further assumed that in '§ as well as &§m_the correct response is
is immediately available so that subjects respond quickly to items in
either of these states. The following tree diagram, analogous to that
for the modified GFT'shown in Chapter IV, page 40 indicates the relation-
ships assumed among the various states. The diagram indicates that any
trial on which an item ig attended to, the response to that item becomes
immediately available {moves into S or LS depending on whether or not
the item.is learnéd). If it is not attended to, it is assumed not to
change states. FEach intervening item has probability 1-8 of causing

an item in an:available state to move to an'unavailable state. If the
item is in LS, it returns to L; if it is in S, it returns to F.

The set of transition matrices given below describe the extension to

the GFT just discussed:

LS L S F P(c|state) E(latlsté.te)
s [ 1 o o o R X
. L y 1.y 0 0 1 El(ri)
" S by 0 1l-by O 1 g
F a7 0 ()7 17| | & zp(n)
s 1 s O F - |
Is | 8 1-8 0 0
E Ty 0 1 0 0
M
v 8 0 0 0 1s0
T 0 0 o 1
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where ES represents the mean response time to an item whose response is
readily available (it is in L8 or B8), El(n) represents the mean ree
sponée time on the th presentation, to items in L, and Ef(n) repre=
sentg the mean'response time, on.the th rresentation, to an item in 'E.
Since it seemed likely that subjects might become faster at retrieving
non-available learned responses, it was assumed that the reaction time
from L might, iﬁ general, depend on n. Specifically, it was assumed

that El(n) -was given by the following difference eguations:

xl(n+l) =c - xl(n) f (1-e) - x, - ng2

where Ei is the asymptotic value of ;i(n). Also, since the error
laﬁencies changed slightly over trials, the reaction time from F .was
asspmed-to depend on the presentation number of the item. .

In applying the model, the.follqwing techniques were used to estimate
the parameters: (1) values of pérameters a, b, 6, and 7 were carried
over from the frequency data. (2) Ef(n) was estimated from the error
latencies., Since the error lateﬁcies declined sllghtly over presenta~
tions, from a mean of é°57 sec. on trisl 1, to a mean of 2.33 sec.'on
trial 6, a geometric decay function starting at 2.57 see. on trial 1,
and leveling off ét 2.33 sec. on trial 6, was used to generate the pre-
dicfed values of Ef(n), (3) The values of Eg, Ei, c, and Ei(a)

(the initial value of Sc"l(n)) were estimated by minimizing the follow-
'_ing function:

48

- _ - - 2 - - .
f(xs,xl,c,xl(E)) = iéi [L(ei) - L(ej;xs,xl,c,xl(Q))] P(ei;xs,xl,c,xl(z))
48 o _ 5 o _ :
+ 2:[L(Ci) - L(ci;xs!lechl(g))] P(cigxsgxl,C,xl(E))-,
i=1 ‘
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~where 1 indexes the 48 points (six trials for each of eight lag-sequences),
L(ei) and L(ci) represent the cobserved latency on the EFh "point for

error and correct responses, respectively, and L(ei; Xy5 §1(2), C, Es)
- and L(ci; El’ §1(2), Cy ;S) represent the predicted latencies for error
and correct responses, respectively. The parameter values which minimized
this function are El = 1.59 sec., 21(2) = 3,53 sec., ES = 1.39 sec., and
¢ = .331. Table 310 shows the predicted and observed values of latencies
for both error and correct responses. The closeness of the predictions
to the observed data further demonstrates the remarkable similarity between
the latency and frequency data.

Before conclusions can be drawn concerning the implications of the
fite of the modified general all-or-none forgetting theory to the frequency

and latency data, some theoretical approaches outside of the realm of the

GFT must be investigated. The following chapter deals with this issue.
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PREDICTED AND OBSERVED LATENCIES “FOR

TARLE 10

CORRECT RESPONSES -

EXPERIMENT T

Trial No. 2 5 b 5 6
Seg. No. Obs Pred Lag Obs Pred Lag Obs Pred Lag Obs Pred Lag Obs Pred Lag Obs Pred
1 2.32 2.57 10 2.38 2.39 16 1.8 1.94 0 1.80 1.72 10 1.61 - 1.é2 10 1.69 1.58
2 2.47 2.57 10 2.28 2.39 10 1.88 1.9+« - 1 ‘1.46 1.49 1 1.h40 1.43% 10 1.57 1.57
3 2.66 2.57 6 2.20 2.09 6 1.72 1.78 6 1.58 1.6g 6 1.54% 1.56 10 1.59 1.58
i 2.h1 2.57 & 2.12 2.09 6 1.87 1.78 1 1.43 1.48 1 1.3 1.43 10 1.55 1.58
5 2.k5 2.57 3 1.88 1.81 3 1.56 1.61 3 1.56 1.53 3 1.3G 1.49 10 1.h9 1.58
6 2.53 2.57 1 1.65 1.60 1 1.55 1.48 0 1.79 1.70 10 1.59 1.63 10 1.51 1.59
'7 245 2,57 1 1.79 1.60 1 1.48 1.48 6 1.70 1.60 6 1.61 1.%6 '10 1.64 1.59
8 2,81 2.57 1 1.57 1.60 1 1.51 1.48 i 1.37 1.4k 1 1.35 1.h43 10 1.65 1.59

' INCORRECT RESPONSES

Trial No. 2 3 i 5 6
" Seq. No. Obs  Pred Lag Obs Pred Lag - Obs Pred - Leg Obs Pred Lag Obs Pred Iag Obs  Pred
1 2.53% 2.57 10 2.52 2.48 1c 2.60 2.2 10 2.55 2.39 10 2.25 2.57. 10 2.04 2.36
2 2.55 2,57 10 2.45 2.48 107 2.40 2.42 1 2.47 2.39 1 2.62 2.37 10 2.3 2.36
3 2.53 2.57 6 2.5 242 6 2.56 2;42 6 247 2.39 6 2.27 2.5?’ 10 2.47 2.38
4 2.50 2.57 £ 2.55 2.48 é. 2.19 2.he R =t 2.39 1 2.92 2.37 10 é;28 2.36
5 2.65 2.57 3 2.26 2.48 3 0,07 2.42 0 3 2.09 2.%9 3 1,66 2.37 10 2.09 2.3
[ 2.53 2.57 1 2.41 2.48 1 2.34 2,42 10 2.0k 2.39 W0 2.21 2.37 10 2.48 2,36
2,56 2.57 1 2.45 2.418 1 p.26 242 6 2.2h 2.3 6 2.1h 2.37 10 2.68 2.36
8 2.69 2.57 1 2.50 2..48 1 2.45 2.42 1 1.4 2.39 1 2.62 2,37 0 2.42 2.36



CHAPTER V

CONCLUDING DISCUSSION

In the empirical results discussed in Chapter III, four strong effects
are evidentﬁ (L) The shortef the lag between two presentations of the
same item, the greater the probability of a correct response on the sec-
ond presentation. (2) If two items have the same value of lag(n), more
errors will be made on trial ntl for that item which had shorter preceding
lags if lag (n) is long, but more errors will be made on the item with
longer preceding lags if lag(n) is short. (5) There is some non-specific
improvement or learning to learn, that occuré during the experiment which
cannot be associated with the learning of a particular item. (L) The
learning curves, for latencies of correct responses show éhe sdme effects
Tfound in the frequency data.

Chapter IV showed that results 1,2, and 4 were consistent with a

. modification of the general all-or-none forgetting theory which assumed

that the subject did not attend on every pre:se:r;tation° It further showed
that the deviations of the theory from the data were, in large part,
attributable to the parameter inhomogeneity implied by result 3 above.
Chapter IV further showed that, in this experiment, the probability, b,
of learning from the short-term state is much smaller than the probability
'E, of learning from the forgotten state. In fact, the over-all fit of the
model to the date is not much affected by the assumption that b = O.
Before we can conclude, however, that the probability of learning from

. the short-term state is zero, or even that it is smaller than the prob-
ability of learning from the forgotten state, as Greeno (1966) suggests,
we must investigate alternative models which fall cutside the class

represgsented by the GFT. o



To clarify the relationships among the various conceptions of the
memory and léarning process describéd in Chapter I as well as those about
to be discusséd, the following classificatioh.scheme will prdve useful.
The models differ és to (l) whether or not there are éepa?ate long~: and
short-term memory stores and (2) whether or not rehearsall (the transfer
of an item from §. to L while another inﬁerfering item is being pre-
sented) plays an important role in the learning of paired assoclates.
Using these criteria, four classes of models can be distinguished:

(1) multi-storage non-rehearsal modeis, (2} multi-storage, rehearsal mod-
els, (3) single storage, non-rehesrsal models and (4) single storage,
rehearsal models. In the remaining sections, each of these classes will
be dealt with in tﬁrn and spécific mddels within the classes will be com-
pared with data.

.'Muiti-stdrage an—rehearsal Models

Two types of models which fall into this class have already been
discussed (the long~shoft (L8} models developed by Atkinson and Crothers
(136h), and the trial-dependent forgetting models (TDF} discussed by
Calfee and Atkinson (1965)). o

The transition matrices for thé modified GFT can be readily inter-
preted in the language of the long-short models. States L and S
can be interrreted as long~ and short-term memory stores. The parameters

8 and b can be interpreted as the probability of transferring an item .

lThe term rehearsal is intended to refer to any transition from a tem-
porary memory state to a more permanent one which occcurs while interven-
ing items are being presented. It refers tc such apparently different
psychological processes as subvocal self-presentation of items other
than the one being presented and the consolidation of memory traces.
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te long-term memory from the short-term and forgotten states respectively.

- The parameter 1-8 can be interpreted as the probability that an inter-

vening item causes any given item to be lost from short-term memory.
Firally, the paramter 7Y can be interpreted as the probability that a
subject attempts to transfer a presented item to another memory store.
With these interpretations the modified GFT is c¢learly consistent with
the psychological assumptions of the long-short models.

The second example of a multi-storage non-rehearsal model is the
trial-dependent forgetting model of Calfee and Atkinson (1965). It will
be recalled from the discussion of the TDF model in Chapter I that the

only difference between the TDF and LS models is that, where the LS model
.éssumes that every intervening item is interfering, the TDF assumes that
items which are in the learned_state are not interfering. Because of
the continuous nature of the task in the present experiment, the propor-
tion of learned items intervening between consecutive presentations of a
© given item is relatively ccnstant over trials. This property is in con-
frast to the more typical list learning experiments where the number of
'intervening learned.items increases with trials. An expected operator
approximationlto the TDF theory can be readily mzde by assuming that
some fixed proporiion, 4, of the intervening items are uniearned, and
that exactly t.g intérfering items occur with a lag of t. Then the
.fransition matrix to be applied hetween two presentations separated by

a lag of %, M(%) equals Mp X Mi'tc
P

lThe term Yexpected operator approximation' refers to the fact that
it is assumed that exactly the expecied number of unlearned 1tems {in
-this case t.q.) occur in each lag of length t. '
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Thus

L S F P{correct| state)
L 1 0 0 1
t.qQ t.q,
M(t) = S b (1=b)8&" (1-b){1-6" % | 1
F a  (L-a)e™%  (1-a)(1-6°9% g

—

If the attention parameter 7 is added to this model in the same way
that it was added to the GFT, the two models have the same transition
matriceg with the parameter ‘f in the modified GFT equal to ¢ 1in the
modified IDF. Hence; no distinctioﬁ can be made between the two models
solely on the basis of the distribution of seguences of errors and suc-
ceSsésa One method which can be used to distingush the twe models is

to conditicnalize on the presentation number of the intervening items.
Since the higher the presentation_number of an intervening item the
greater the probability that it iz learned, the TDF model predicts fewer
errors following items with high presentation numbers. Table 11 shows
the proporiion of errors on trials 2 and 3 for items with lag(l)= lag(2)=1
(sequences 6, T, and 8) as a function of the trial number of the single
intervening item. There is little evidence here that items with smaller
trial numbers tend to interfere less than. items with larger trial numbers.
A Xe measure of independence, under the assumption that the proportion
of errors 1is due only to the trial number of the item presented, and not
that of the intervening item, yielded a %2 - 8.57 with 10 degrees of
freedom, clearly a non-significant value (P > .50). Though these data
are not strong enough to reject thé TDF assumption that learned items are
not interfering, they certainly lend no supﬁort to it.

In summary, the modified forgetting model can be readily interpreted

as a long-short model, and the fact that it fits the data of Experiments I
. 53



Table 11
Proportion of errors on trials 1 and 2 for sequences 6, 7 and 8

as a function of the trial number of the intervening item.

Trial number of the intervening item

12 3 i 5 6

. 212 135 .147 <170 140 160
Trial L (p50)  (200)  (150)  (200)  (50)  (50)
. Opigl 2 .060 093 .100 .080 .080 070

(50) (300) (200) (50) (100) (200)

(Barentheses give the number of ¢bservations in each case.)
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and IT might be construed as indirect evidence for the multi-storage non-
rehearsal assumptions which underiie the LS models. The following sections,
however, weaken such an argument.

In addition, the lack of support for the TDF assumption concerning
the non-interference of interpolated items in L makes the general assump-
tion that all the items are equally interfering, independent of their
learning state, more palatable.

Multi-storage Rehearsal Models

Atkinson and Shiffrin {1967) have recently outlined in great detail
a conception of short-term memory and the lLearning process which differs
mgrkedly from those discussed in Chapter I. Atkinson and Shiffrin assume
that there are two distinct memory stores, a long-term store from which
“little forgetting occurs, and a short-term store from which forgetting
readily occurs. They further assume that so long as an item is held in
the short-term store there is memory transfer from the short- to the
long-term store. Thus, where for Greeno, the primary learning occurs
when as item is in the forgotten state, for Atkinson and Shiffrin much
of the learning takes place from the short-term state. Furthermore,
Atkinson and Shiffrin place emphasis on the rehearsal process, which they
postulate to be the mechanism whereby legrning occurs between, as well
as during, the presentations of that given item. In order to capture
much of the flavor of the ideas of Atkinson and Shiffrin, the author
has developed a simple Markov model, which allows for learning to occur
from the short-term state so long as an item remains in that state.

The transition matrices below describe the process.
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L S F P(correct|state)

L 0 o ] 1

MP = S Ip (1-b) 0 1 s
Fiby  (1-b)y  (1-7) | e

L 8 F

L {1 0 0 ]

M = S |a (1-a)e {1-8){1-a)

P

F |0 0 1

The parameter 7 represents the probablility of entering the short-term
‘store if an item is presehted while it'is in the forgotten state; b is
the probability of learning if an item is in the shoft—term store or
enters the short-term store on a trial when the item is presented; a is
 the probebility of rehearsing and leérning the item when ancother item 1s
pfesented, and, finally, € 1is the probability that an inter#ening item
wlll not remove an item from the short-term memory store. In order o

obtain the probability that an item is in each of the states aflter <

'interpolated items, we need cnly calculste 'M(ﬁ) = Mp X ME o
. : b
L 5 F P(correct|state)
L 1 0 0 _ 1
M(t) = & | bta(t) (1-v)[ (1-a)8]" X(+t) 1
t .
Fojrlota(e)]  7(1-0)[(1-a)e]”  (L-7)#rX(t)| 8
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where

(1-b)a(1-[(1-a)8]")

a(t) = T-(1-2)6 ,

and

-
X(t) = (l-b)(l-agg%iﬁigéf[(lua)e1_)ﬂ

To see precisely the effect of adding the rehearsal parameter tc the
*
theory, it might be well to lock at the compareble matrix, M (t), for

the modified GFT, viz.,

L S T P(correct|state)
L | 1 0 0 ] [ 1]
M(t)= 8 | 2  (1-ob)e’ (1-7b)(1-0") 1 .
Fly  (1ahe®  (1)4(1-a)(1-6") | e

Although there are several differences between the matrices, for example
that the F to L transition depends on + for the rehearsal model and
is independent of t for the modified GFT, the differences in predictions
about the data space are less obvious. In fact, a theorem by Atkinson
and Crothers (1964) can be easily generalized to show that these two
theories predict exactly the same distribution of probabi;ities over the
data spece of errors and successes.

Atkinson and Crothers show that for any two models described by the
transition matrices,

P(correct|state)

1 0 G 1

= 1
A _aal a22 a25 s

8 a52 a55 g

o7




and

P(correct|state)

1 0 o 7] 1
B Py P Bosy * ’
by by, B33 g

they will predict the same distribution of error success protocols if

the following three equations hold:

a = b

33 33
o5 = by
gnd a52.° a =D = b

23 32 23

The analogous conditions for the models described by the transition

matrices
P(correct|state)
1 0 0 1
Alt) =la,,(t) () ays(t) 1 ;
aaz(t)_ a52(t) a55(t) g
and

P(correct|state)

1 0 0] 1]
Do (6) o (t) Dbu.lt
s (8) Danlt) bas(t) &
is simply that for any tl and t2 the following three eguations must hold:

a55(tl) = b35(tl)
axp(t) = Poslty)
and a58(tl) . a25(t2) = big(tl) . baj(tz) .
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*
These equations in terms of M{t) and M (t) above require that

(1) () + 2E0-2)06) (1 110301 Y) - (1) # p(1-a)(1ee Y)

1-(1-2)8

+ t
(2) (-b)[(1-a)el * = (1-7b)o -,

t

t
(3) 7(1-0)l(1-a)o] * - BRLE=elL8) (3 11 q)0) 2
% t
= y(1-a)e T+ (1-7p)[1-0 °],
which is true if
M(t) M*(t)

: ry=7 ,
\ b=79b,

(1-a)e =6 ,

and

(1-0)(1-a)(1-8)
l-{1-2)8

1- =8

Hence, this rehearsal model, which assumes that nearly all of the learn-
ing occurs from the short-term state, predicis exactly the same curves
as the ones attributed to the modified GFT in Chapter IV under the con-

ditions that 7 = .7625, b = 1047, a = .0381, and 8 = .9379. It is

also of interest that the best fitting three-parameter model can be ob-
‘tained by the restriction that a =b 1in the rehearsal model which

yields a o = 5L.8 {comparsbly to a X? d.f. = 45) with é = E = .Oli,

¥ = .7500, and 9 = .9469.
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Before leaving this multi-storage rehearsal model, 1t dught to be
mentioned that it_predicts the same probability distribution over the
-data Space even if the _f to _E .tranéition in the rehearsal model is
zero. That is, the following set of matrices leads to the same predic-

tions as the modified GFT:

I ) T P correct| state)
L 1 0 0 1
M =8 b 1-h o] .
P
F ] Y 1=y g
and
L 1 0 0
M =8 a (1-a)@ (1~a){1-8)
P

eS|
O

0 1

This non-identifiablility result is somewhat discouraging to those who
want to argﬁe, as Greeno (1966), that since b 1s small or zero in the
ﬁodified GFT model, we can therefore.conclude.that the probability of
learning from the "short-term state" is zero, or at least smalip In
fact, 1f one invokes a rehearéal process, no such conclusion can be
made, even though the parameters of the modified GFT are identifiable.
More @léborata expefiments aimed gpecifically at the fehearsal—nonm

" rehearsal question must be done before such a conclusion can be made.

Three general types of models falling into this clase will be dis-
gussed: (1)} Greeno's coding medel (1966), (2) Bernbach's forgetting model

(1965) and (3) Estes' fluctuation model (1955 a,b; Izawa, 1965).
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The states and parameters of the modified GFT can be readily inter-
preted in a way consistent with Greeno's representation of the learning -
process (Chapter _‘I). The learned state, L, and the short-term state,

5, are interpreted as statesrin which the subject has a code stored in
memory which will lead to the correct response. If the code will support
retention for the duration of the experimental session, the item is gaid .
to be in L. TIf not, the item is said to be in 8. The forgotten state,
', 1s one in which the subject has no code stored. The attention para-
meter, 7Y, can be interpreted as the probability that the subject creates
a code on any given trial on which he does not have one stored. The para-
meter a 1s the probability that the #ubject creates a good code (one which
Will support.retention through the experiment) given that he creates a code
at all. Since subjects do not creatg_a‘new code when they have one stored
which yields correct responses, the S5 to L transition should be zero,
~and hence, b must be zero. Thus, if b 1is assumed to be zero, the
modified GFT is consistent with Greeno's coding interpretation of the
legrning procesgs.

The second model, Berrbach®s forgetting model (1965), which assumes
that learning occurs only on preééntation trials and that all learning
occurs from the short-term state, is not.consistent with the findings of
this investigation. In~order to account for these data and have all

.learning o¢cur from the shortmterm state, one must_allow for the poseibility

of rehearsal.
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The other important model in this class which has not yet been
discussed is Estes' Fluctuation Model (1955 a,b; Izawa, 1965). This
model derived from Stimulus Sampling Theory, has a different flavor than
the other modelsdiscussed thus far. The fluctuation model, asg applied
here, can be characterized by the following set of assumptlons:

(1) The stimulus member of each item, together with thelcontext in
which it 5ccufs, comprises a set of stimulus elements, or cues,
N¥* in number.

.(2) At ény time, some of these cues are in an active state (i.e.
can be:sampled by the subject if the item is presented), while
the remainder are inactive.

(3) Transitions between the active and inactive states occur ran-
domly ovér.time, there being some constant probability of a
transition during any short interval of time At.

(4) At any time, any given cue may be associated with ("conditionéd
to").fhe correct rééponse,‘somé specific incorrect response, or
neither.

(5) On each anticipation trial, there is some fixed ﬁrobability,

a, that all of the cues in the sample will be conditioned to
the cofrect:response°

(6) The probability of a correct response ié equal to the propor-
tion of cues in the sample that are conditioned to the correct
response.

By further assuming that N¥* i1s very large, that initially all elements
‘are randomly conditioned to one of the three responses alternatives, that

the proportion of active elements is constant over the experiment, and
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that during each intervening ftrial each active element has probability

16,

of becoming unavailable and esach unavailable element has prob-

ability 1—92 of becoming available, the following set of transition

matrices can be written to describe any given element.

AC

uc

U
(5.1)

Al

1

AC A
O 0

1 C

0 1-¢x

0 G
uc AU
i-Gl 0
92 0
1-6

G 1-6

In state ég_ the element gg is both available and conditicned to the

correct response, in UC unavailable and conditioned , in AU available

and conditioned to & wrong response alternative and in UU wrongly

conditioned and unavailable. The matrix, M{t}, which shows transitions

between any two presentations of a given item separated by t

items is given by
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AC _ uc _ AU uu
N b t _

AC | p+(1-a)w (1-p){(1-w") 0 0

Uc P(l—wt) (1-p)+pwt - 0 0

AU a(pH(L1-p)v")  a(l-p)(1-w") (1-a)(p+(1-p)w’) (1-a)(1-p)(1-w")

t %
U L. 0 0 p(l-w "} (1-p)+pw

W = 8 +9 -

and the proportion of available elements p = —— .

The start vector, s, for this model is given by

s = (pg, (1-p)g, p{1l-g), (1-p)}(1-g))
where g 1s the proportion of elements initlally conditioned to the cor-
rect response, and p is the proportion of available elements.,

A careful study of the equations for the learning curves ieads to
the initially surprising result that the learning curves for the fluctua-
tion model, for this situation, are algebraically eqﬁivalent to the
Learning curves for the modified general all-or-none forgetfing theory
with b = 0. The parameter equivalences which give this result are: a
. Tor the fluctuation model equal to » of the modified GFT, ¥ equal to
| 8, and p equal to a. |
| The proof of this:equivalence is somewhat tedious and is postéqned
until the appendix. The procedure is to firsi show that the probability
of an error on trials 1 and 2 is the same for both modéls and then that
for any trial n, the error probability depends, for both models, on the
same function of the error probabilities of trials n-1 and =n-2,

It should be noted, however, that the equivalence shown here is an

equivalence of leerning curves, rather than ar eguivalence of processes

7h
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- a8 shown in the preceding sections. In this case, other statistics of the

. data will diseriminate between the two models. Before turning to statis-

tics which will discriminate, it is interesting first to consider two
other versions of the fluctuation model which also lead to identiéai learn=-
ing curves, but which differ among themselves on other statistics. Thé
fact that the minimum ng estimate of p in the large §¥* fluctuation
'model was estimated to be .5 suggests the following itwo-parameter version
of the fluctuétion model.. Suppoese ﬁhat N* = 2, that at all times one
element is available and one is unavailable and that, on each intervening
trial, with probability 1-8 the two elements exchange places, and with
probability g they remain as they were. This version of the fluciua-

tion model can be characterized by the following set of transition matrices:

ce cu uc Uy
cc [ 1 0 0 o
cU 0 1 0 0
M =
2 U a 0 1-a 0
w0 & 0 1
cc |1 0 0 0
cu 0 9 1-6 0
.M_ =
D uc- 10 18 8 0
[ 0 0 o 1

where CC represents both elements conditioned, CU  the avaliable
conditioned correctly and the unavailable not, UC +the unavailable
.correctly conditioned and the available not, and UU neither correctly

conditioned. There are two distinct assumptions which can be made sbout

>



- the initial stgte of the elements and thus the start vector and the response-
given~state véctoro One can assume as in the large N¥* case, above,.
that all elemeﬁts begin conditioned to one of the responses. In that
case, tle sﬁartvvector would be
s = (g7, (1-g)e,e(1-8), (1-8)°).
1
: 1
The response-given-state vector would be R = .
A 0]
0
Alternatively, one could assume that all of the elements hegin in an

- unconditioned state, in which case the start vector would be

5 = (0} 0, 0, l)

=

and the response-given-state vector would be R = :

g

- Both models predict the same learning curves as the large N¥ fluctua-
tion model with p = .5 and thus the same as the modified GFT with

b =0 and a = .5. However, the models all differ among themselves on
the predictions for other statistics. For exampile, Table 12 shows a com-
parison of the obhserved and predicted means and variances of the distri-
. butions of the trial of the last error for all of the models. (The
predictions for the large N* fluctuation model were generated by 400
.stat-rat subjects with N¥ = 200. These for sll other ﬁodels Were gern-
:erated numerically by use of a 7090 compuber.) It should be recalled

that the learning curves for all of the models except the modified GFT

are the same. The predictions of all of the models are slightly too low
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TABLE 12

PREDICTED AND OBSERVED MEANS AND VARIANCES OF THE

DISTRIBUTION OF THE TRIAL OF THE LAST ERROR

Modified 2-el. Fluctuation 2«el. Fluctuation
Modified - GFT Large N*¥ 81l conditioned with initial

SEQUENCE 1 Observed GFT 1=0 Fluchtuation initially © guessing state

B(X) 2.177 2.4 2,199 ' 2,493 " 2.61k
VAR(X) 5,698 3,420 3.400 i 5.5h6 : 3,173
SEQUENCE 2

E(X) 1.896 2,054 2.066 2.167 2,265
VAR(X) %.333 3,182 B340 3.366 3.231
SEQUENCE 3

E(X) 1.963 C 2,197 2.228° ' 2.435 ' 2.550
VAR(X) - 5.669 3.616 .. 3139 ‘ 3.7TL 3.610
SEQUENCE 4

E(X) 1.86% 2,016 2.08% 2.153 . 2.2u8
VAR (X) 3,446 3,406 3.606 ' 4038 ' 3,624
SEQUENCE.S

E(X) 1.950 2,079 - 2.209 : 2.7302 ' 2.40%
VAR(X) 3.913 3.518 4,126 4,269 4,125
SEQUENCE 6 _

B(X) 2.150 2.295 2,445 : 2.675 _ 2.798
VAR(X) 4, hol k215 4.375 4489 4,300
SEQUENCE T

E(X) . © 2.007 ©. 2,190 2.366 ’ Z.511 2,623
VAR(X) k.ot9 L.189 L.hs9 4,639 b kT
SEQUENCE § _

E(X) 1.657 1.80k 2.116 2.%18 - 2,109 2,18¢

VAR(X) | - B.3%8 3.972 b.502 h.eo5 - - heTh - 536

17



for the means but are very close for the variances. The two versiopns of
the modified forgetting models seem better than the cothers, particularly
for sequences 1 and 3, and the unrestricted version of the modified for-

getting model is clearly best on sequences 5 through 8.

Single Storage Rehearsal Models

A modél of this ¢lass which, qualitatively at least, accounts for
the empirical aspects of the data discussed at the beginhing of this
chapter is Bernbach’sl replica model. The primary primitive notion of
the model, the replica, is conceived of as an image of the paired-
assoclate item which is stored in memory. If a subject has a single
image or replica stored, he will be able to respond correctly. The fol-
lowing set of assumptions characterized the model:

(1) When an item is presented, the subject rehearses that item a
Poisson distributed number of times; one replica is added for each
rehearsal. The parameter of The Poisson is assumed to be dependent only
‘on whether or not the subject has any replicas at the time of presentation.

(2) When an intervening item is presented, some amount of storage
‘interference is assumed to occur, and some number of the replicas of items
similar to the intervening item are destroyed.

(5) During any time when the presented item is not being_rehearsed
any one of the unpresented items for which there is at least one remaining
replica can be rehearsed a Poisson number of times. Thus, with some prob-
ability any item with at least one remaining replica, can be rehearsed

and have a Poisson distributed number of replicas added to memory.

;Personal Communications 1567
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It is clear that the general replica model contains toc many param-
eters to be readily applied to the present data in its complete form,

‘and at the present time no simplification of fhe model whiéh accounts for
"~ the data of the preéent investigation, has been found.

In conclusion, this final chapter has shown a number of equivalences
between models with Widely‘varying‘assumptinns: (1) The unrestricted
modified forgetting theory is consistent with the LS and the TDF models
on the level of sequences of errors and successes. But if the TDF
assumption that items in E are not interfering ig igolated by condition-
alizing on the reinforcement number of the intervening items, the LS
assumption that items are equally interfering independent of their state
of learning is supported. (2) A rehearsal model, which allows transitions
frqm B8 to I while intervening items are being presented, was shown to
be isomorphic to the unrestricted modified forgetting model. This isomor-
phism holds even if all learning is assumed to occur from the short-term
stafe in the rehearsal model. (3) A modification of Greeno's coding model
and several versions of Estes' fluctuation model all predict learning
curves ldentical to those of the modified GFT under the restriction that
b = 0. Although the modified coding model is isomorhpic to the modified
GFT, b= 0, +the fluctuabtion models differ from the others with regard to
statistics other than the learning curves. In particular, the modified
coding medel b = 0 does slightly better than several versions of the
fluctuation model on the predictions of the distribution of the trisl of
last error.

These equivalences, particularly number 2 above, force a reconsiders

ation of the initial goal of this investigation. The fact that the
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inclusion of the possibility of rehearsal into the general all-or-none
_forget"ting framework makes the relative values of the probabilities of
learning from the forgotten state and from the short-term state indeter-
_ minable is both enlightening and disappoinmting. The question of whether
Jlearning occurs more readily from the short-term memory state or the
forgotten state _cannot be answered until the theoretical ideas involved
become sufficiently specific concerning the variables which affect the

amount of rehearsal and exactly how much interference occurs.
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APPENDIX A

PRESENTATTON SEQUENCE FOR EXPERIMENT I

[T TR
FoiRpHS

Exp lag Ttem Rep- Exp lag Item Rep- Exp leg  fter Rep-
pres sequence . pres lica- pres sequence pres llea- ‘pres  sequence pres llca-
Fo. " Ho. No. %lon No. No. No. tion No. Ko. .- No. tion
1 2 1 1 81 .6 6 2 101 5 -1 2
2 i 1 1 52 8 3 1 162 i [ 2
3 L 1 1 535 5 5 1 103 1 3 3
Lk T 1 i 54 8 Iy 1 10k 1 5 2
5 6 1 1 55 3 1 1 105 5 2 2
6 T 2 1 56 8 5 1 106 -2 3 3
T 6 2 1 57 1 6 i 107 Filler :
8 7 % 1 58 3 1 2 108 2 4 3
9 6 3 3 59 T 1 2 109 o5 3 2
10 b - 1 60 1 1 2 110 - 5 3
11 Filler 61 T 2 2 111 2 & 2
12 2 2 1 &2 3 2 i 112 3 1 3
.13 1 2 1 63 7 % 2 13 5 4 2
i .6 1 P 6l 5 [ 1 114 ! L 3
15 7 L 1 65 3 2 2 115 L8 2
16 6 2 2 €6 Filler . 116 8 1 2
17 i 3 i 67 8 & 1 -117 5 5 2
18 6 3 2 &8 Filler 118 8 2 2
19 Y 4 1 €9 3 3 i 119 "3 2 3
20 6 b 1 70 7 Y 2 120 8 -3 2
21 b 5 1 TL 1 2 2 121 2 6 3
22 T 5 1 72 3 3 2 122 B Tl 2
23 2 3 i T3 4 1 2 123 4 1 3
24 1 3 1 s 2 L 2 12l 8 5 2
25 2 L 1 75 Filler 125 1 5 3
26 Filler 76 3 L 1 - 126 3 3 3
27 2 5 1 T 7 5 2 127 7 "1 3
28 Filler T8 Filler = .. 5 6 2
29 6 N 2 9 3 H 2 e T 2 3
Filler 8o ok 2 2 30 0k 2 3
6 5 1 L 1 it 3 131 7 3 3
b -6 1 82 1 3 2 132 i 1 b
i 6 1 &3 3 5 1 153 3 . 3
Filler 84 2 1 z “134 Filler
35 1 I 1 85 2 2 2 135 .. 8 6 2
- 36 Filler 86 3 5 2 136 1 6 3
37 5 1 1 gg L 3 2 137 y -3 3
38 2 6 1 T 6. 2 138 Tk 3
39  Filler 89 h & 2 139 b 3
50 6 5 2 ) Filler _ 4o 3 .5 3
b1 5 2 1 91 i 5 ) 11 4 5 %
42 6 .6 1 ] 1 2 3 1h2 8 1 3
43 Filler 95 1 4 2 143 1. 2 4
W Filler o4 3 6 1 Ll 8 2 3
hg 5 3 1 95 2 2 3 1hs T 5 3
he o1 5 1 96 2 3 2 146 8 3 3
k7 PFliler o7 3 6 2 47 Filler
L8 8 1 i 98 2 b 2 148 B8 b 3
Lo 5 b 1 99 Filler 19 Filler
50 8 2 1 100 2 5 2 150 8 5 3
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PRESENTATION SEQUENCE FOR EXPERIMENT I (cont.)

Exp lag Item Rep- Exp lag Iitem Rep- -Exp lag Item Rep-
pres sequence pres llcaw- Pres seguence pres lica~- pres  speguence pres lieca-
o. No. No. $ion Ne. .. No. No. tion Ko. No. Ko. tion
151 % 6 3 201 Filler 251 T 5 5
152 L 6 5 202 Filler - : 252 5 2 L
153 3 o1 3 20% . Filler i 25% 4 [ 5
154 1 3 b 20k  Filler 25k 3 3 5
155 6 2 3 205 Filler 255 8 1 5
156. T 6 3 206 . 2 € h 256 3 3 b
157 6 .3 3 207  Filler 257 8 2 5
158 8 1 '8 208 3. L g - 258 2 1 &
159 5 1 3 209 Filler 259 8 % 5
160 8 2 L 210 TT &6 y 260 5 L i
161 8 6 3 211  Fillex 261 8 & 5
162 8 3 b 212 h 1 4 262 T 6 5
165 5 2 3 213 Filler . 263 8 5 5
16k 8 4 4 214 Filler 264 5 5 L
165 1 S L 215 3 2 Iy © 265 1 b 5
166 8 5 )y 216 Filler ‘ 266 6 1 -4
167 5 5 3 217 Filier 267 Filler
168 6 i 3 218  Filler 268 6 2 4
169 2 1 4 219 L 2 b 269 2 2 &
17¢  Filler 220 Filler 270 [ 3 L
L7L 5 LS 5 221 Filler : 271 Filler
172 Filler p22 3 3 s 272 3 1 5
173 Filler . a23 Filiexr . 273 Fiiler
T 17k Filler ' 22k 4 1 5 2T 8 6 5
175 5 .5 3 225 Tillex 275 5 6 L
176 1 5 4 226 ’ 3 b 276 o1 .5 5
177 a8 6 b 227 Filler aT7 1 1 6
178 Filler 228 4 b b 218 Filler
179 6 L5 3 229 3 i 4 279 - 37 2 5
180 2 2 b 230 I 5 y 280 2 3 6
181 7 1 L 231 L 2 5 281 6 L L
182 Fiiler 232 1 1. 5 T 282 .2 4 6
183 7 2 b 233 T 1 5 283 Filler
C18h Piller 234 Filler 284 2 5 6
185 7 5 4 235 7 2 5 285 Filler
. 186 5 ] 3 a36 ] 5 b - 286 5 -3 5
- 187 1 6 4 237 7 3 5 287 1 & 5
188 Filler . 258 4 3 5 288 L 2 &
1189 Filler 239 Filler : 289 Filler
190 6 6 3 240 4 b 5 290 5 i 5
191 2 3. 4 241 b 6 L agL Filler
192 . 7 L b 242 b 5 5 292 [ 5 4
195 - a b 4 243 1 2 5 293 3 I 5
194 Piller 24k T ) 5 - gy 5 2 5
195 2 5 lp 245 Fillex . - 295 2 [ 6
196  Filler - 2he Filler 296  Filler
197 Filler . i 2l7 3 6 L 297  Filler
188  Filler 248 5 . 1 4 298 5 3 5
199 7 .5 4 2hg Filler . 299 1 3 6
200 Filler . ) ) 250 - Filller . 300 3 5 5
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PRESENTATION SEQUENCE FOR EXPERIMENT I (cont.)

Exp lag Item " Rep- Bxp lag Ttem Rep-
pres gequence pres lica- pres sequence Pres lica~-
No. No. = No., +&iom No. No. Ho. tion
30L 3 1 [3 351 .6 2 &
302 5 b 5 - 352 7 6 6
303 6 6 h 355 6 3 6
3L  Filler - 35k 5 5 6
305 Filler 355 2 2 5
306 5 5 5 356 - Flller
307  Filler 357  Filler
308 3 2 6 358 & b 5
309 Filler 359 Filler -
310 1 Y [ 360 . Filler
31l 3 6 5 361 . Filler
312 8 1 6 362 Filler
313 Fliler 363 Fiiler
3% 8 2 6 36k 6 b 6
515 5 3 6 365 5 6 6
316 8 % 6 366 T2 3 5
317 5 6 -5 367 Fitler
318 8 4 & 368 2 4 5
319 L 1 6 369 6 5 5
320 8 5 & 370 2 5 5
bl 1 5 & 7L Filler
o] 3 k () 372 Filler
323 T 1 [ 373 Filler
%2k Pliler T ‘Filler
325 i 2 6 35 6 5 6
%26 L 2 .6 376  Filler .
327 7 3 6 377 Filler
328  Tiller 378 Filler
329 3 5 6 379  Filler
320  FPiller . 380 6 a6 5
3351 8 6- 6 AL 2 & 5
532 i [3 [ 382 Filler
533 L 3 & 385 - Filler
3L 7 i 6 38F  Piller
335 4 L 6 385 . Piller.
3%6  Filler 386 & 6 6
©BRT Sk 5 -6 387  Filler
338 5 1 6 ‘Filler
339 Filler . 389  Filler
340 3 6 6 360  Filler
U3kl T 5 6 391  Filler
3ha 5 2 -6 392 . Filler
343 6 3 5 393 Filier
3hl 2 i 5 gk Filler
35 [ 2 5 395 Filler
46 5 3 6 396 Filler
347 6 3 5
348 3 6. 6
3o 6 16

5 O

350
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SET OF CVC'S USED IN PRESENT EXPERIMENTS

BEH
EEX
BIP

" BOF

CcIW
- coT

o cod
FAJ

~FOH

¥oe,

g
10
GIV
60

JAT
JEY

JOM
Juc

ATPENDIX B

KAQ
KEB .
KEZ
KIF

KIG

MOJ

PAF

PEH

PID

- PIY

qQTH
QTY
QoM
Q0L

-y

TIW

TOT

8L

VAH
VEB
VEC

WAT

WLJ

WoG

WOoY

XAL

XEF

YAV
ich 3
YEQ

YOF
YOG
ZAV

ZER

zus




LEARNING CURVES FOR EACH REPLICATION IN EXPERIMENT I*

1st Replication

APPENDIX C

4th Replication

Trial No. 1 2 3. 4 5 [ Trial No. 1 2 % 4 5 6
Beg. Ro. 824, Ro.
1 .12 e .38 .28 .22 .14 1 .60 40 .20 .16 .12 .08
2 .6l .58 Al .08 LOb L1k 2 52 W2l L1k .02 o} .10
3 man =i Lk _.10 .10 ;16 3 62 W36 26 .16 Ol .02
b .52 46 .26 .20 L1k .20 b .76 36 .1h .0k Lok .08
5 50 .26 +2h .08 L1 o1 5 64 .26 .18 12 Ok .16
6 . 66 .20 .10 +30 .20 .16 6 .68 .08 .10 L1h .16 Nl
7 76 W46 .10 .30 2N 22 T Th .16 .08 L1k .08 1
8 70 .1b -08 +08 Q20 L1k | 8 .66 .10 L0 .02 .0k <10
2nd Repliestion Sth Replication
Trial No. 1 2 3 3 5 3 Trigl No. 1 2 3 i 5 6
Se%' NO'__ L8 ..5_2_ _‘ 118 .16 ' 12 '._10___ ; Se% N-o‘ .80 .30 .16 .06 .8 Ok
2 7L 36 .2k o .ok b 2 770 .28 b .08 .06 .06
3 .76 .26 .30 .18 .10 .1h 3 .68 .30 .1 08 .06 .08
i .50 .52 .22 .06 .08 .12 L LTh S5l .10 .12 .02 .08
5 .76 .18 .16 .18 ¢} .10 5 .70 .24 ) 0&1 .08 .10 .08
6 5k Bl ) .32 .- .18 & STh Nl .08 .28 .12 16
7 16 .26 L1k .12 .08 .12 7 .5k .12 .ok W1k .08 .06
'8 .70 .1k .10 o .ok 1k 8 .68 .12 .06 .0b .02 .06
3rd Replica;cion . 6th Repligation
Trisl No. 1 2 3 b 5 6 Trial No. - 1 2 3 L 5 €
Seq. Na. Seq, No.
1 .62 .35 .16 .1 .12 .1z 1 +66 .26 22 .12 .10 .16
2 .0 24 .22 <06 .02 Sl 2 -66 .28 A .06 LOb .10
3 A6 .20 .16 .12 08 10 3 600 .2 Lh .16 .10 .08
b .66 . .28 .10 .02 -0l .12 L G0, .28 18 .06 .02 .06
5 .78 .16 .08 .06 .08 12 5 ;1+8 .22 .16 .12 b 18
6 58 .12 .06 gk e 12 6 .80 a2 L0k 18 .08 .06
7 68 .16 Ok «16 Ik .12 7 -66 .08 .08 .10 08 .06
8 .90 .20 .12 .02 2 .o 8 60 .20 .0k .06 .02 .12

. % Egch proportion in the table. iz based on 50 polata.
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- 9g

DISTIRIBUTION OF TUPLES OF ERRORS AND SUCCESSES FOR EXPERIMENT I¥

Trialsg 1-6 Lag Sequences Trials 1-6 Lag Sequences

123456 1 2 3 y 5 6 T 8 123456 1 2 3 4 5 6 7 8
000000 5. 6L 70 68 57T 68 64 68 100000 10% 110 105 103 138 119 123 146
000001 0 2 % o 5 1 2 4 100001 1 6 3 ] é 5 7 1k
000010 1 0 3 o 2 L 2 1 100010 4 0o 2 0 0 6 3 a
000011 0 o 1 0 o] 1 0 0 100011 3 2 0 1 1 b 5 1
000100 o 2 3 1 3 7 3 0 100100 7 0 6 L 5 12 8 2
000101 0 o 0 0 1 1 0 0 100101 0 0 0 2 0 b 1 0
000110 1 o} o} 0 1 2 1 0 100110 0 o} 1 0 0 4 2 o
0COLLL 0 0 1 1 Q 2 0 0 100111 1 o 0 0 1 2 4 0
001000 i 6 4 4 2 0 2 2 101000 11 13 7T 10 3 s 6 12
001001 2 3 1 o 1 0 ¢ 0 101001 0 2 1 0 1 0 1 0
001010 2. 0 0 0 1 o 0 0 101010 0 o] 0 1 2 o o} 0
001011 . 0 0 o] 0 0 o} 0 101011 0 0 0 0 2 o 0 o
Q1100 a 0 2 0 0 0 1 0 101100 2 o 1 1 5 ¢ 1 2
001101 0 .1 0 0 1 0 0 C 101101 "1 1 o 0. 0 1 0 1
001110 0 0 0 0 0 1 0 0 101110 0 0 3 0 0 3 i o
001111 0 1 0 L o 1 0 0 1013111 2 1 1 1 0 3 1 o]
010000 6 12 10 17 7 2 7 5 110000 3L 34 21 35 18 7 21 18
010001 o} 2 o) i 0 0o 3 3 110001 3 5 3 6 3 2 0 5
010010 o 0 0 0 0 2 0 c 110010 i 0 1 o 1 3 2 i
010011 o 0 0 0 1 0 1 1 110011 0 o 2 0 2 1 2 1
010100 3 1 1 3 0 2 1 o 110100 1 2 3 3 2 Iy 6 1
010101 1 1 0 0 0 0 1 0 110101 3 1 1 1 3 2 3 1
010110 0 0 1 0. 1 1, 1 0 110110 0 0 2 0 0 1 2 1
010111 1 0 0 0 0 1 0 C 110111 1 0 0 1 0 2 1 0
011000 2 5 6 5 2 2 0 3 111000 9 13 10 8 6 2 0 1
011001 0 0 2 1 © 0 0 1 111001 2 6 2 2 3 o 0 1
011010 3 1 o] 1 0 0 0 0 111010 ") 1 0 1 3 0 0 0
011011 1 1 1 0 o] 0 0 0 111011 i 0 1 5 o 0 1 o
011100 1 2 2 0 1 1 i 0 111100 3 i by 2 0 6 2 2
011101 0 0 0 2 s 1 0 0 111101 3 0 L1 1 2 1 0
011110 % 1 1 3 0 0 1 0 111110 b 1 2 0 1 1 2 0
01111 2 1 o 0 1 0 2 0 111111 4 0 0 1 5 4] 1 0

* A O represents a correct response, a } an error
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APPENDIX E
PRESENTATION SEQUENCE FOR EXPERIMENT 1T

| Exp lag  Ttem Rep- Exp lag Item Rep- Exp lag Item Rep-

pres seguence pres llecaw pres sequence pres lics- pres gaguence 3yres lica-
No. No. No. tion No. Neo. No. tion No. No. No. tion
i 10 1 1 51 18 3 "1 101 19 2 %
2 9 1 1 52 9 -1 2 102 13 2 2
3 10 2 1 53 Filler . 103 19 3 3
b Fillex 5l Filler 104 ‘11 4 2
5 10 3 1 55 Filler 105 15 4 2
6 Filler ) 56 17 i 2 106 16 4 2
i 10 L 1 57 Filler : 107 Filler
8 Filler , 58 Filler 108 10 1 2
g 10 1 59 B L 1 109 Filler
10 Filler 60 11 5 i 110 10 2 2
11 15 1 1 61 13 % 1 11t 17 4 2
12 Filler 62 14 1 2 112 10 3 2
13 9 2 1 6% 9 2 a 113 13 3 2
1h 17 1 1 64 1h a 2 114 10 4 3
15 1 1 i3 €5 19 4 1 115 11 5 2
16 11 1 il &6 14 3 2 116 10 5 2
17 14 2 1 Y 17 2’ 2 117 12 1 1
18 Filler &8 14 b 2 118 Filler :
18 14 3 1 ’ 69 17 i 1 119 12 2 1
20 Filler T0 14 5 2 120 18 1 2
21 14 i 1 71 11 6 2 121 12 3 1
a2 15 2 1 e 13 4 1 122 11 1 3
23 1k 5 1 73 1k 6 2 123 12 L 1
2h g 3 1 s 9 3 e 124 13 4 2
25 17 2 1 75 Filler 125 12 5 1
26 1L 6 1 76 i5 1 2 126 Filler
27 11 2 1 7 11 1 1 127 18 - 2 2
28 19 1 1 78 17 3 2 128 Filler
29 Filler 79 9 [ 1 129 9 [ 2
30 19 2 1 80 19 4 2 130 Filler
31 Filler 81 16 1 a 1351 Filler
32 19 3 1 82 11 2 2 132 N 2 2
3% 15 3 1 a3 13 g 1 133 il [ 3
Bk 16 1 1 a8y 18 N 1 134 18 3 2
35 9 b 1- 85 9 b -2 135 15 5 2
36 17 3 1 86 13 & 1 136 19 4 3
37 18 1 1 87 15 2 2 137 14 1 3
38 il 3 1 88 16 2 2 138 13 6 2
59 135 1 1 85 Filler 139 14 2 3
4o 15 L 1 S0 Filler 180 -9 1 3
b, 16 2 1 g1 13 1 2 141 ik 3 3
La 10 6 1 g2 Filler : Lha 12 6 1
L3 19 1 2 % 11 3 2 143 1Y L 3
Ly 18 2 1 ok Filler a4k 11 33
45 19 2 2 T 95 16 3 2 145 14 5 3
L& 9 5 1 g6 9 5 2 146 18 1 3
b7 i9 3 2 97 Filler 147 Filler
43 16 3 1 15 3 2 148 1h 6 3
kg il 4 1 99 19 1 3 149 10 [ 2
50 13 2 1 100 Filler 150 10 1 3
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PRESENTATION SEQUENCE FOR EXPERIMENT II (cont.)

Ttem TRep-

'Exp

250

88

- Exp lag © Exp lag Ttem Rep-
pres sequence pres liea- pres sequence pres lica-
Yo. No. No. tion No. No. No. tion
151 g 2 5 201 13 5 3

1152 10 2 3 202 Filler
153 18 2 3 R20% 15 % 3
154 10 3 3 204 13 6 3
155 11 4 3 205 Filler
156 10 b 3 206 Filier
157 13 1 3 207 Filler
158 10 5 3 208 Filler
159 Filler 209 i1l 3 b
160 18 3 3 210 15 4 3
161 Filler 211 17 3, Y
162 9 3 3 212 e 1 4
163 16 1 3 213 Filler
16h 17 1 3 21k 19 2 4
165 Filler 215 Filler .
166 11 5 % 216 19 3 Y
167 18 b 2 217 9 6 3
168 1% 2 3 218 Filler -

169 Filler 219 17 i ]
170 16 2 3. 220 11 b y
171 Filler 221 14 L 4
172 Filler 222 Filier :
173 =] b 3 22% L 2 Y
174 12 1 2 22k Filler

175 7 2 3 225 1 3 h
176 12 2 2 226 18 1 y
177 15 3 3 227 1k 4 4
178 2 3 2 228 Filler

179 3 3 3 229 14 5 e
180 h-3 iy 2 230 Filler

181 15 1 3 231 11 5 b
182 12 5 2 2% il 6 L
183 il 6 - 3 233 18 2 i
18k 9 5 3 23 Filler

185 Filler : 235 9 L )y
186 17 3 - 3 236 Filler

187 1L i Iy 237 Filler

188 16 4 3 238 Filler

189 17 1 y 2729 10 1 4
190 1% h 3 2ho 18 3 b
191 10 6 3 2L 10 2 4
192 15 2 3 2in 15 1 i
193 18 i 3 243 10 3 i
19k Filler il 17 b L
195  Filler 2hs 10. 4 i
196 Filler _2ke 9 2 4
197 Filler 2h7 10 5 4
198 1l 2 ) 248 11 6 h
199 12 [ 2 2hg 19 . k 4
200 17 2 ok 12 1 3

. 265

lag Ttem Rep-

pres  sequence pres lica-
No. No. No. tion
251 Filler
252 12 2 3
253 15 2 b
254 12 3 3
255 9 1 5
256 iz h 3
257 g 3 L
258 12 5 5
259 9. 1 5
260 Fiiler .
261 19 2 5
262 Filler
263 19 3 5
264 15 5 )

Filler
266 9 2 5
267 Filler
268 9 b I
269 Filler
270 12 1 L
271 15 L L
272 12 2 i
273 18 L I
27h 12 % L
275 12 6 3
aTé 12 i i
277 9 3 5
278 12, 5 4
279 9 5 L
280 10 6 L
281 15 1 5
282 Filler
283 16 1 y
284 Filler
285 10 1 5
286 Filler
287 10 2 5
288 g 4 5
289 10 3 5
290 16 2 L
291 10 4 5
29 15 2 5
293 10 5 5
29l 13 1 5
295 2 & L
296 1% L4 5
297 16 30 &
298 Filler .
299 9 5 5
200 18 1 5



PRESENTATION SEQUENCE FOR EXPERIMENT IT (cont.)

Exp lag  Ytem Rep- Exp lag Ttem Rep-

pres seguence pres lica- pres sequence pres  llea-
Ho. No. No. tlon No. No. No. tion
301 Filler . 351 11 4 5
302 Filler . 352 Filler
303 15 3 5 3535 135 1 b
304 Filler 35k Filler .
305 13 2 5 355 %6 .k 5
306 Filler 356 17 3 5
307 18 2 5 357 Filler .
308 16 4 4 358 Filler
509 1 1 5 359 Filler
310 15 4 5 360 Filler
311 1 2 5 361 Filler -
312 9 [ 4 362 11 5 5
© 313 14 3 5 363 12 1 2
31k 18 3 5 36k 1% - N
315 14 L 5 365 e 2 5
316 13 3 5 366 Filler
31T 1 5 5 367 12 3 5
318 11 1 5 368 Filler
. .319. . Filler .. 369 12 4 5
320 . 1k .6 5 370 Filler
321 Filler 371 12 5 5
22 Filler 372 Filler
323 Filler 57 Filler
%2l Filler : 37k Filler -
325  Filler 375 13 3 b
326 10 & 5 376 Filler
327 13 4 5 377 Filler
328 " Filler - %78 Filler :
329 . 1L 2 5 370 11 <) 5
330 16 1 5 380 Filler -
331 Filler 381 Filler ..
© 332 9 G 5 582 Filler -
5% Filler 383 Filler
A3k 17 1 5 584 Filler
335 Filler ] %85 Filler ]
336 Piller %86 13 b 13
33 14 2 fa3 Filler
33 13 5 % %8& 12 6 5
239 Filier 389 17 L "5
340 1L 3 5 390 Filler
341 13 & 5 391 Filler
3h2 Filler z02 Filler
343 Filler 393 Filler
340 . 16 3 .5 . 394" . Filler
345 7 = 5 395 Filler
346 Filler . 306 Tiller
347 18 4 5 . 397 13 5 L
348 Filler %98 Filler
349 Filler c 309 Filler
350 Filler ) 400 13 & 4
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APPENDIX F

PROPORTION ERRORS PER TRIAIL: FOR EACH REPLICATION IN EXPERIMENT IT*

lst Replication

Srd Beplication

Trial No. 1 2 % 4 5 6 Trial No. 1 2 3 4 5 6
Se%’ o .67 1T .11 .13 .06 5‘“‘3' o .89 .50 Ay .28 .17 .33

10 .83 ik .33 .33 .oé i 10 .56 L1 17 a1 .06 .56
11 .53 ik .28 gy .1 .22 11 -50 .33 56,11 .06 L1
12 61 .28 .06 0 ) 0 .56 12 E7 .28 o} .06 .06 .06
1% 8 L6 W17 .39 22 i d . 13 ' N .22 .28 11 .22 A7
14 .56 .39 .28 11 .06 0 14 .18 0 .06 0 o J06
15 .83 .89 .50 .28 15 .61 _ .56 .50 .22
16 56 2 .28 .53 16 50 .67 33 .5
17 .78 .39 A7 .39 17 W83 Al 22 .39
18 83 39 1 .56 18 67 28 .39
19 .Bo .28 L11 .33 19 .56 0 .11 .39

2nd Replication ith Replication
Trial No. 1 2 3 e 5 6 Trial No. 1 2 500 b 5 é
Seq. No. Seq. No.

9 .72 R .28 .22 .06 .28 S .78 .56 .39 .p2 11 .28
10 +50 .22 .06 .06 0 .22 10 .72 .28 0 .06 .17 .39
11 .56 A .33 .28 T .08 11 67 e .33 .7 .22 11
12 .85 .22 22 .11 ' 0 %) 12 .56 .28 .28 o] 0 .53
13 .72 e LAT .06 L1 .06 13 .72 .39 :17 W17 .11 27
1 ‘.78 .39 3T o- o - .11 14 .83 W17 W17 0 .06 7
15 .83 56 .39 .06 ) 15 .63 .28 A7 - .1l
16 67 .28 .33 .28 16 ' .56 .28 .17 .28
17 R SN .28 .33 17 .78 .39 RIS
18 .72 .22 .06 .50 8 .50 .28 a2 .22
19 .56 22 .11 .28 19 61 AT .28 .67

5th Replication

Trial No. 1 2 3 b 5 8 Trial No. 1 2 3 L
BT e se 3 B 06 a1 T e s s
10 .39 .53 .11 .06 ] 33 16 ..72 .33 I S

11 i .17 .33 .28 17 g1 17 .78 .33 17 33

12 6L .22 1L c .06 .06 18 .78 .22 AT 1L

13 67 .39 .22 .33 A7 .06 19 .83 0 0 .2B
o1 .56 .06 ] 0 .06 0

in thils table is based on 18 points.

*¥Fach proportion
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Appendix G
PROCF OF TISOMORPHISM COF LEARNING CURVES
FOR LARGE N¥* FLUCTUATION MODEL (LNF)

..AND MODIFIED GFT WITH b =0

Theorem: The learning curves for the LNF and the modified GFT,

b = 0, are identical.

Proof: The proof is inductive. First is must be shown that the proba-
bility of an error in trial n (E(n)) 1is the same for both models for
n=1 and n = 2. Then it need only be shown that E(n+2} for both

models depends on the same function of E(n+l) and ZE(n). First, for

the modified GFT, it is clear from equation 4.1 that
31
E(n) = (1-g)®{n)" .
Further from equation 5.1 1t follows that for the LNF

AU(n)

E(n) = 5

the proportion of available items which are unconditioned. From the

fact that F(l) = 1 it follows that

E(1) = {1-g)

The start vector for the LNF given on page ‘7i' implies that

AU(1) = (1-g)°p, hence for the LNF

_-glep s
E(1) = S (l-g) .

L F(n) represents the probability of being in state F on trial n. The
analogous notation is used for the states of the models throughout this
proof.
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Thus the two models predict the same values for E(1).

Now for the modified GFT we see that

F(2) = (1-7) + (1-a)y(1-6 7) ,
where lag(i) = by This implies
tlr
(4.1) E(2) = (3-g){{1-7) + (1-a)7(1-6 7)1 .

- For the INF, given by equation 5.1,
_ ty by
coau(2) = au(L)(1-a){l - (L-p)(i-w 7)) + uu(1)p(ilew 7) o

Substituting for AU(1) and UU(1l), the appropriate values from the
start vector on page Th =~ we get
t 't
AU(2) = (1-g)pl{1-a) - (1-a)(1-p)(L-w 7) + (1-p)(1-v )] .
Dividing both sides by p and simplifying,
‘ t
(a.2) £(2) = (1-g)((1-a) + (1-p)a(l-v 1)) .
Hence, if - y of the GFT is set equal to & of the LNF, if a
of the GFT equals p of the ILNF, and if 6 equals w, the equations
A.l and A.2 are identical. This implies that the LNF and modified
GFT have the same value of E(2).
Now from equation 4.1l for the modified GFT we see that, if b = 0,
t

+ N
(4.3) F(n+l) = {(1-7) + y(1=a)(1-8 M) IF(n) + (1-6¢ P)S(n) ..

Furthermore,

. t t
(Ad) 8(nt1) = 7(1-a)0 " P(n) + 6  8(n) .
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From A.3 we get

t
5(n) = Eel)F() (=0 (1-2) (-6 ]

1-0 &

Substituting into A.4

. e T -
P(n+2)-F(ntl) (L-7)y(1-a) (1-0 i} 7(l_a)etn r(n)

l_etn+l
tn tn
o 8 R+l )-F(n) ((1-y)+y(i-a)(1-6 "}]]
T t )
1.6 %
Combining terms and simplifying,
| I | - th ﬁn :
F(nt2) = F(wel) | 32+ y(1ea) + |- £ B(2)
1-6 n+l 1.6 1.6 n

t T .
- [y(i-a)(1-6 n) - 7(l-a)(1-0 n) + (1-7)1 ,

which equals-

t t

n Ny
p(ni1) | <EZL 4 (1) + 2| - F(n) - & (),
1.9 °H 1.6 » 1-6 B
Multiplying both sides of the equation by (l-g) we get
| by t
(4:5) B(ni2) = B(an1) « | L2 4 5(1a) + - B(a) &-372)
: n+l n 1-8 n

1-6 1-6

Now we want the znalogous difference equation for the INF. We

know that

t t .
(4.6) " AU(n+l) = AU(n)(1-a) {1-(1-p)(1-w )] + UU(n)p(l=w P) |
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"~ and

(a.7)  bu(ndL) = Au(a)(i-a)(1-p)(1-v ) + UU(n)[1-p(lxv P)T .

Solving for UU(n) in A.6 we get

t
_ AU(n+1)-AU(n) - (1-8) - {(1-(1-p) (1-v ™)}
. :
p(i-w 7)

UU(n)

Substituting into A.T,

) t
AU(n+2)-AU(n+1) (1)  [1-(1-p){1-w )]

s
p(1-w 21y

t t T
_ (1-8)(2-p) (3-w ) -AU(n)+[AU(n+1) -AU(n) - (1-8) {(1-(1-p) (1-w ") H[1-p(1-w *}]

%
p(1-w )

Combining terms and simpiifying,

av(a2) = auan1) Bl (1ea)(1-p) + 2 -
(Lew n+l) 1w ©

o o -t t t 2

__AU(n) [(1-8) - (1-a)(1-p)(l-w ™) - (L-a)p(l-w *) + (1-a){1-p)p(l-w )
t
(1-w ™)
t 2

- (1-a)(2-p)p(1-w %) 1,

"&ﬁhich equals

%
£
AU(n+1) [}—iééﬂl—- + a{1l-p) + — : :l— AU(ﬁ) [(1-a)[1-(1-w ")]1.

(1~ (1w %)

Diwviding both sides by p then we get

oh



o t_ "
(A.8) E(n+2) = E(n+l) H_Liéil__ + a{l-p) + W — | - E(n) ( 'a)z . .

1 -

o lew
A comparison between equations A.8 and A.5 indicates that they are the

same difference equation. - - o _ : o Q.E.D.
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