

































































































































































then Vo 7 % if 4 <k and

| Xy 7Y if £=% or £=k+ 1.

We will first prove that the condition is a necessary condition for
the realizability of ». Let £ realize % and let =x, Xgseeer X,
Yoo oo s ¥yr WysesesWy, Zysene,8, sabisfy the hypothesis of the condition.
For (i) if x ¥ x, then f(x) > f(x).+ 1 vwhich is contradictory. Hence
7x »x for all x e Y.

For (ii) notice that we have

flx) > £y} + 1

flx ) >f(y) + 1

)+ 1> f(wl)

f(zﬂ) + 1 :>f(w£)

Summing these inegualities yields

Xk 8
S of(x, )+ ) flz,) + &
=1 * 4= 7
k )
> F tly) + ¥ o) vk .
=1 i=1
This implies _
k )
(7) 2-x> ) fly)+ ) £lw)
: fe] {=1

- {igi f(xi) + iiﬁ f(zi)} .
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Applying f +to the antecedent of (ii) yields

k j
(8) f(xO) + ig:l f(xi) + i§1 f(zi)

X ;
= flyy) + izﬁ £(y;) + 2 £(w,)

1

From (7) and (8) it follows that
(9) £yg) > f0xg) + (k- £) .

We are assuming that k >0 and £ > 0. We have two cases and both
cases use equation (9).

Case 1. k = 0.

Case 1.1. £ = 0. We have f(yb) E-f(xo)u This implies f(yo) +1
> f(xo). Thus, 11X, > ¥4

Case 1.2. £ = 1. In this case from a consideration of our original

list of inequalities we see that (9) becomes

ﬂ%)>f&&+(k—ﬂ).

We have f(yo) > f(xo) - 1. Thus, f(yo) + 1> f(xo) and again
T Xy 7T Iy

Cases 1.1 and 1.2 correspond to the second part of the conclusion in
(i1).

Case 2. %k > 0. There are three subcases.

Case 2.1. £ <k - 1. We have f(yo)_f f(xo) + 1 and therefore

yb %-xo.
Case 2.2. £ = k. As in case 1.1 we get = Xy 7 Ygr

Case 2.3. £ =k + 1. As in cage 1.2 we get xb 7-yb.
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This completes the proof that the condition is a he:cé'ssary conditicn
Tor the realizability of . To prove that the condition is sufficient
assume that the condition is satisfied by = defined on &. Notice that
Y 1is non-empty, finite and rational. Consider the set W defined as
follows.

W= {x-y-e:x, yeY}
Ny +e-x 3 %X, ¥y €7Y)

It is obvious that W 1is non-empty, finite, ratiocnal and symmetric. We
define the relation » 0 on W as follows. For all elements x - v - e,
y+te-x in W

X -y -e 0 Iif and oniy if x & ¥

y+te=-xwQ 1f and only if T x+ ¥y .
We must prove that our hypothesis implies that this definition is justi-

fied. We must show that for all =z

172 eW if =z, = z. then z. %0

2 1 2 1

if and only if Z, = 0.

Cgse 1. X~y - &= xl -y, - e for xX,y,x in Y. We have

1 1Yy,
¥y + X = Xy +y. If x>y, then k¥ =1, £ =0 and hence by the

hypothesis X7 Yy Similarly =x, +» ¥y implies that x # y. There-

1

fore, x -~y ~e w0 if and only if =x - e 0.

1771

Cage 2. yte -~x= yl +e -~ x for x,¥,X in Y. We have

1 1291

¥, ty=y +x If 7xry, themn k=0, £ =1 and hence by hypoth-
esis -1 X, ¥ Iq e Similarly -1 Xl'?- ¥q implies =1 x = y. Therefore,

y+e-x»0 1f and only if yl+_e-xl‘r,-0.

Cage 5. X -y - e = ¥y + e -~ x.. This case cannot arise because

1

e 1is independent of the elements in Y.
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This completes the proof of the justification of the definition of
7 0. Let N={z¢W:zmO0}. Wewill prove that if £ reslizes N
in W, +then f can be used to define a realizastion of Y. Since v
is drreflexive and Y is non-empty we have =7 x »x for some x in Y.
This means that e »#0 holds in W but - e #» 0 does not hold in W.
Let f realize N in W. It follows that f(e) >0. Define g on L
as follows. For all x € L

g(x) = £(x)/t(e) .
The function g zrealizes 7. Let x,y be in Y.
X vy if and only if x - vy - e w0 .
X vy if and only if x -y - e ¢ N .
x vy if and only if f£(x) > £{y) + f(e) .
X%y if and only if g(x)uz gly) + 1 .

Therefore, to complete the sufficiency part of the proof it only
remains to be shown that the hypothesis implies that N is realizéble
in W. We will prove that (i) and (ii) of theorem 3.7 hold. After this
is proved we can take N for (x e€ X : x # 0] in theorem 3.7 and the
realizability of N in W will be established.

Condition (i) follows from the fact that W is symmetric. For (ii)
let ZoyrreesBo g be any seguence in W such that Z; # 0 for each
i= 1,...,n -~ 1. These elements must have one of two forms. For each
i=1,...,n -1 either =z T X% - ¥;-e or zZ, =Yy, + e - Xy for

1

some X,V in Y. Let us relabel the Z; 80 that as a result we have

"M
Il

X, - yi - e Tor i

_ Iyooe,k
1 i ’ ?

Z, = yj + e - Xj for j=k+1,ce.,k + 4 =n-1
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where x,, y, € Y for all 1 such that 0 < i < n. The assumption in

(ii) of theorem 3.7 can now be written as

Xk
(10) 2o+ 2 (x; -y, - e)

i=l

k+4
+ z: (y. + e - X,) = Q .
i=k+1 -
= + - = - -
We also must have ZO Xy e yc or z, XO yo e for some

XO’yC in Y. Recall that e cannot be written as a linear combination
of the elements in Y. Therefore, e must oceur the same number of
times negated as unnegated in (10). This means there are only two poOs-

sibilities for k and £ in (10). Bither k= £ +1 or k= £ - 1.

If kX =£, then Zq does not contain e and hence 25 ¢ W which is

impossible.

Case 1. k=4 + 1. In this case e must occur unnegated in 2y

Th t b + e - i .
us Ty TUS e of the form X e Y5 for some Xyr¥y inm Y

From {10) we have

k k+d k k+4
(11) in+ > ¥s = Zyi““ ) x5 e
1=0 i=k+l i=0 i=k+1

By assumption zi*ﬁ'o for all 1 such that 0 < i < n. This means
that xi >-yi for all 1 such that ¢ < i<k and 7 Xy ?—yi for all

i such that k +1 <1 <n- 1. Therefore, applying our hypothesis

- where £ <k yields Yo 7 %o This means Yo = %q = € F 0 and hence

+ - 2 .
XO e yb % 0 or Zo £ C

- Case 2. k=4 - 1. In this case e ig negated in 25" That is,

z. is of the form x in Y. (11) still

0 q " €& yb for some x

0’90
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holds and we can apply the hypothesis for the case £ =k + 1. This
4 R ] + - - -
yields = XO \ryo This means 'VO e x0>; 0 and hence XO yo e
X 0 or z % 0.
This completes the sufficiency part of the proof and hence completes
the proof of theorem 3.8. An analysis of the sufficiency part of the

proof which was given above shows that we can replace {1i) in theorem 3.8

with a somewhat weaker condition.

Theorem 3.9. Let the binary relation % be defined on Y. # is
reaiizable if and only if for &li x din Y for all seguences xo,,oe,xk,
yb,...,yk, wl,uo.,wﬂ, ZyreeesZy in ¥ for all i such that 1<1i<k
and for all §J such that 1< j < £ if xi‘r Yio T wj‘7-zj, and if
£ =%-1 or £=k+ 1, then

(1) T x»rx

, k )
(1i) if Xy * z xg z z,
1=1 i=1
%: £
=¥ + y. + z W,
S S
then Yo ¥ %, if £ =%k -1 and
=k+ 1.

T X T Y, if £

The conclusion of (ii) in 3.9 contains exactly the two cases singled
out in the proof that the condition in %.8 is sufficient for the realiza-
bitity of . Therefore, the proof which was given to prove that the
conditions in 3.8 are necessary and sufficient conditions for the real-
izability of % will establish theorem 3.9. It is interesting to see
how the condition in theorem 3.9 implies the condition in theorem 3.8.
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Let XO’ cesX s Ygreees Vo WyseossWps Zoseco,Dy satisfy the assump-
tions in (i;‘L) of theorem 3.8. There are two cases to be considered.

Case 1. £ <k - 1. Bince Y is not emrty and since 7 is irre-
flexive by assumption, we have 7x % x for some x in Y. To our list
of relationships between the Wi and the Zi we add ™ X ¥ X exactly
k~1- 4 times. We now have a seguence X2 e oo s ¥y yo,“n,yk,

Wogeoe,W

1 g Wpg1r etV 1o Zl’“s’z,@’zﬂﬂ_’“”’zk-l which satisfies the

hypothesis of (ii) in theorem'509u Therefore, yo ra X.O as desired.
Case 2. £ = k. In this case we add —1x ¥ x for some x in Y
to our original seguence exactly once. Let &7 = £ + 1. Applying (ii)

in theorem 3.9 where 4f

£+ 1 =k +1 ylelds T Xy T Y, 88 desired.

We will now return to the original problem where Y% is defined on

B S

S an algebra of sets on a finite non-empty set X.

Theorem 5.10. 7 defined on & 1is reslizable if and only if for alil
A in & for all seguences AO,,.n,Ak, BO’””’Bk’ Cl,n”,Cﬂ, Dl,noo,Dﬂ
for all i such that 1 <1<k and for all j such that 1< < ¥
if Ai %Bi, . Cj“r Dj and if £ <k + 1, then

(i) T A 7A

(11) if for a1l y in X

K y
ag(y) + igi AS(y) + ié% D3 (¥)

< < £
= Bo(y) ) B:(y) + ) CE(.Y) s
1=1 =1

then BOZ‘AO if £ <k and

1 el i = = ; .
AO BO if £ k or £ k+1
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We prove this theorem by interpreting the objects with which we aré
dealing in such a way that theorem 3.8 will be applicable. We choose
some e such that e ¢ X. Let S =X U {e}. Let Z bve the set of all
0, 1 valued functions on S. That i1s, the set of characteristic functions
of all the subsets of 8. If we iclentify each element in ¥(8) with its
corresponding function in Z, then 2 hecomes a subset of L = L{8}.

% can be interpreted as being a subset of Z. We identify & with a
subset of the set of all O, 1 valued functions on X U (e} which have a
value of 0 on e. Thus S becomes a subset of Z and § mimics a
gubgset of the power set of X. In theorem 3.8 we take X for A4, S for
S,_Z for Z and & for Y. Theorem 3.10 follows immediately.

In the same way that we proved theorem 3.9 we cah prove the following
theorem. Recall that throughout this chapter we have been assuming that

% is not empty and this is essential for the proof of 3.G.

Theorem 3.1l. » defined on $ 1s realizable if and only if for all A

in &, for ell Ao,.,.,Ak, BO,.D.,BR, Cl,n..,cﬂ, Dl,,aa,Dﬂ in & for
all 1 such that > <1i <k and for all J such that 1<j< £ 1if

Ai'r-Bi, 1 Cj ba Dj and if £ =k -1 or £ =%k + 1, then

(1) 1A %A
(ii) 4if for all y in X
| C X C L C
Aly) + iz,l a;(y) + ¥ p(y)

i=1

k j
= Bg(y) + i§l B;(Y) * j_g}_ C;(.V) )
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then Bo'r AO if £ =k -1 and’

- . + Y .
1 AO 7 BO if £ =k +1

Before discussing the problem of finding necessary and sufficient
conditions for ¥ to be realizable by a probability measure on &, we
will briefly discuss the axioms in theorem 5,10. In particular, we will
show how 3.3, 3.5 and 3.6 follow from these axioms. This will be the
content of theorem 3.12 below. After proving this theorem, we will give

an explanastion of the parameters in (ii) of theorem 3.10.

Theorem 3.12. Let the binary relation % be defined on . Assume that

for all A in 3 <for all sequences AO,,.O,Ak, BO’°°"Bk’ Cl,acu,cg,

D ,.,Dﬂ in § for all i such that 1 <3i <k and for all J such

1’
that 1< j< £ if Ai 7'Bi, 1 Cj %—Dj and if £ <k + 1, then
(i) T AvA

(ii) 4if for all y in X

'k 4
adly) + Y aj(y) + ¥ Di(¥)
1=1 1=1

k ) .
- Bg(y) + igl Bg(y) + i§l C;(y) ,

then B + A if £ <k and
0 0

A ¥ B i £ = = + .
-1 0 0 if k or £ k 1

This assumption implies 3.3, 3.5 and 3.6.
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The proofs of 3.5 and 3.6 are easy. For 3.5 we have £ = 0 and
k > 1. Applying the conclusion of (i1} in theorem 3.12 where £ <k

yields B. vA . For 3.6 £ =k + 1 and heace j'AO‘T B For 3.3 we

0" o 0°

first prove that < %, %> 15 a semiorder. Assume that

A v B
C¥D
7 A¥-D.
Take B for Ao, A for Al, C for AE’ A for Cl’ C for BO,
B for Bl’ D for BE’ and D for Dl' We have for all y in X

B°(y) + A%(y) + c®(y) + D°(y)
= ¢%(y) + B%(y) + D°(y) + A(y)

‘Hence for all y in X

o 1
Ag(y) + 3 A;(y) + ) Di(y)
i=1 i=1

It

c 2 c L c
By(¥) + igl B (y) + L ¢ ()

1

Therefore, by the hypothesis where £ <k we have BO >‘A0 or C B

as desired.

For the next semiorder axiom assume that

A vB
B7»C
TA>D .
Take C for AO’ A for Al, B for Ae, A for Cl’ D for BO’
B for Bl’ C for BE’ U for Dl' In this case for all y in X
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c®(y) + A%(y) + B%(y) + D%(y)
= D%(y) + B°(y) + cO(y) + Ac(&)'n

Thus by hypothesis where £ <k we have Bo‘f AO or D »C as desired.

We now must prove (ii) of definition 3.3. Let A,B,C De elements

of & suchthat ANC=BNC=¢. Notice that for all y in X

(8 uC)(y) = a%(y) + c(y)

(BUC(y) = B%y) + c(y) .
Assume that A ¥ B, Take B UC for AO, A for Al, AUC for BO
and B for B,. We have for all y in X

1

(BUCy) + a%(y) = (A U )%y + B%(y) .

Applying the hypothesis where £ =0 <k =1 we get B, ¥ A  or AU C

0 &
+~BUC.
Converselylassume AUC»BUC. Tske B for AO, AUC for Al,
A for BO and B UC for Bla The characteristic function assumption
holds in this case and since O = £ <k =1 we have B 7+ A. or A » B.

0 0
This completes the proof of theorem 35.12.

We will now discuss the parameters in axiom (ii) of theorem 3.10.
We will show that axioms (i) and (ii) yield exactly the same informétion
concerning the ordering as a realization of <+ yields. A realization of
> implies that » is irreflexive and this is reflected in axiom (i).
For (ii) consider first the anaslogous situation in the case of subjective
probability structures. The Kraft, Pratt arnd Seidenberg counterexample

shows that the existence of a realizstion of '» imposes restrictions on

the ordering which are not implied by the fundamental axioms. Consequently,

63



a stronger axiom is needed which will impose at least the same restrictions
on the ordering as those which are imposed by the realization. This is
essentially the role played by axiom (iv) in Scott's theorem.

In the semiorder case let < &, v > be a semiorder such that » is
realizable. Let us ask what conclusions can be drawn concerning the order-
ing % assuming that f 1s the function which realizes 7. The most
obvious situation is the foliowing where A A, B ,,oo,Bn are in .

R s L |
We have

Thus

f(An) > f(Bn) + 1.

Assume further that there is an A B in ¢ such that for ail y in X

o0
. i n o
(12) T oA (v) = X Bi(y) .
i=0 i=0

Adding the above list of inequalities yields

n

(13) X or(a) >

f(Bi) +n .
i=1 i

e

Since T 1is additive (12) and (13) imply

(14) £(B)> £(Ay) + n > 1(A)) + 1 . '

6l




This implies BO - AO and this case corresponds to 35.5.
The occurrence of n in {14) suggests the following situation.

Suppose -that we had & sequence of relationships of the form ™ Ci >'Di

mixed in with our originzl list of reiationships. ¥For each relationship

of this fTorm we would have 1o add an ineguality of the form

f(Di) + 1 > f(ci)

to our sum {(13). As long as there are no more than n - 1 of these
negative cases we will still get an eguation like (14)}. To formulate
this case explicitly let Al,ngn,Ak, Bl,.no,Bk, Cl,o,e,cg, Dl,n,n,DE be

in %. Assume that k¥ >0, £ <k and

1 Cl“r Dl
1C, 7D, .
Assume further that we have an AO, BO in $ such that for all y in
= c £ C
(15) 2 Ay) + 2 D)
i=0 i=1

k £
= ) Bi(y) + ) Cz(y) .
1=0 121

Applying f +to the new list of reiationships and adding the resulting

inequalities we get
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k £

(16) - Y f(a) + Y (D) + 2
=1 Y g1t
k ;
> ) f(Bk) + 3 f(Ci) + k .
i=1 i=1

The inequality in (16) is a strict inequality because we can assume
that there is at least one negative relationship in the list. If this‘is
false, then we are back to the first case which we discussed. From (15)
and (16) we get
(17} f(BO) > f(AO) +k -4 .
k > £ dimplies that k - £ >0 and this implies that %k - £ > 1. There-

fore, from (17) we have f(BO)_E f(AO) + 1. This implies that B, > Aj.

| These two examples indicate how the first part of the conclusion in
axiom (ii) of theorem 5.10 arises. There are exactly two more cases where
sequences of inequalities like those which lead to (16) yield information
concerning the ordering. In particular, they arise when £ =k and
£=k+1 in (17).

Assume that £ =k + 1. From (17) we get f(BO) + 1 >-f(AO). This

0 0

Thus f(BO) + 1> f(AO) or -1 AO~7 By. These two cases correspond to

the last part of the conclusion in (ii) of theorem 3.10.

means T A. % B.. Now let £ = k. From (17) we get f(BO) > f(Ao)c

To see that sequences such as those which we have been considering
will not yield further information about the ordering assume that

£ =%+ 2, From (17) we have

(18) f(BO) > f(AO) -2,
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Equation (18) clearly does not imply that B, ¥ Abn The only possibility

is for (18) to imply that - AO > B. must hold. Eowever (18) is consls-

0
tent with AO ?'BOE Assume Ao‘r BO and hence

f(AO) > f(BO) + 1 .

From {18) we have

f(BO) > f(BO) -1

which is not contradictory. Therefore (18) does not rule out the possi-
" bility that AO ?'Eb holds in the ordering.

Similar remakrs can be made when £ >k + 2., Therefore only those
conclusions which we have derived follow from sequences.of inequalities
of the above form. Axiom (ii) in theorem 3.10 summarizes all of these
conclusions. This argument suggests that axioms (1) and (ii) yield just
as much information concerning the ordering of § as can be derived from
the actual realization. Intuitively, we see that axioms (i) and (ii) are
sufficient to guarantee that % 1is realizsble.

We return now to the problem of a realization of » which is a
finitely additive probability measure. Notice that the definition of a
realization which we have been using must be modified. We do ﬁot want
the just noticeable difference interval to have a value of 1 becaﬁse this
is the value which X will have under the probability measure. Assume

‘that we do not change the definition and that iX] >1. If % is real-
izable by a probability measure, then it follows from the additivity
regulrement that every atomicrevent in 3 d1s indifferent to the impos-

sible event ¢n
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Definition %.135. Let »> be defined on . » is realizable by =z prob-

abllity measure on  1if and only if there is a real valued function P
defined on ¥ such that
(i) < X,%,P > is a finitely additive probability space
(ii) +there is an ¢ such that 0 < e <1 and for all A,B, in %

A > B& P(A) >P(B) + e .

Theorem 3.14. ILet % be defined on S. » is realizable by a probabil-

ity measure on § 1if and only if

(i) > is realizable by a function f such that (@) = 0 and
f(4) >0 for all A in &

(ii) X » g.

We will prove first that the condition is a necessary condition for
¥ 10 be realizable by a probability measure on . Let P be the prob-

ability measure on § which realizes %. Since
1=P(X) = X U@ =PX) + P(g) ,

we know that P(g) = 0. P(A) >0 for all A in § because <X,%,P >
is a finitely additive probability measure. Define g on & as follows

for all A in £
g(a) = P(a)/e .

For all A,B in & A » B if and only if P(A) > P(B) + ¢ if and only

if g(A)_E g(B) + 1. Therefore, g satisfies axiom (i). TFor (ii)
1=PX) >e>0+c¢>P@) +e¢

and hence X » @.
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To see that the conditions are sufficient let £ satisfy (i). Define

P on & as follows for all A in
P(A) = £(A)/£(X) .

From (i) and (ii) we know that f£(X} >0 and this justifies the definition
of P. Let A,B be in &. We have A ¥ B if and only if P(A4) > P(B) +
1/£(X). Thus, 1/£(X) satisfies the requirements of ¢ in (ii) of defi-
nition 3.13. < X,;%,P > ig a finitely additive probability space because
P(4) >0 for all A in .

Notice that if we drop the restrictions on the realizing function
which are given in theorem 35.14 (i), then the probability measure would not
necessarily have non-negative values. That is, if f(a) = - 1/2 for some
A in &, then P defined above would be such that P(A) < 0. Hence,
< X,%,P > would not be a finitely additive probability space.

This answers the gquesition concerning the relationship of semiordered
vrobability structures to finitely additive probabllity spaces at least in
one sense. We can still raise the guestion of finding conditions which are

sufficient but not necessary conditions for the realizability of . This

problem will be discussed in the next chapter.
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CHAPTER IV

REALIZABLE SEMIOEDERS

In this chapter we will discuss the problem of finding sufficient
conditions for + to be realizable by a probability measure on V%a As
usual, we will assume that X is a finite non-empty set, GC @(X) and
that § 1is an algebra of sets on X. In order to apply the theorems in
chapter III, we will also assume that & # @. The conditions which we
will discuss will impose restrictions on ¥ in terms of the cardinalities

of the elements of . The conditions will be similar to those in chapter

I and IT.
(4.1) For all A,B in % Av Beo Al >|B| .

If <%,v> satisfies 4.1, then » 1is realizable by a probability
measure on %. Let < §, ¥> satisfy 4.l. We will prove that the condi-
tion in theorem 3.14 is satisfied. We will first prove that % 1s real-
izable by proving the condition in theorem 3.10. Axiom (1) is obviously
satisfied by < ,7 > Let AO, 58 o,Ak,‘ BO, o0 "’Bk’ Cl, 0,02, Dl’ oo "’Dg
satisfy the hypothesis in axiom (ii). We have

>3l +1

lad > I3, | +1

.|




Adding these inegualities yields

k 2 k 2
Yolad+ ¥ Io) > Y Il + % olol v 4.
i=1 i=1 1=1 i=1

This Implies

(199 % Jd+eer T 1]+ T i+ ee., T 0]

xeAl xeAk xeDl xeDﬂ

S D £ 631 T N E P9 B D SR £ #'3 3 PSS S F 30
xeBl xeBk xeCl xeCE

>k - £ .

The assumption on the characteristic functions of the elements of

the sequence is that for all x din X

k £ k £
Y oal(x) + Y pi(x) = Y BS(x) + ¥ cS(x) .
i=0 * i=1 * 10 * i=1 *
This implies
(20) Yol es Xl y R I rees X (1)),
xeAO xeAk xeDl xeDE

- Ll T J0al e 8 e T ]

xeBo . xeCl xecg

Combining (19) and (20) we get

Yol - Y lix >x- 4,

xeBO xeAO

Therefore,

(21) | ]BOI > IAO] +k- 4.

T




There are two cases to be considered. First, assume that £ < k.

This implies fBO[ > IAO, and by 4.1 we have BO v AO. The second case

isfor 4=k or £=k+1. Tf 2=-%, then |B| > |a]

. This implies
not |AO| > IBOI and hence 'TAO‘?'BOn Ir £ =k+1 tben £ >0 and
(22) can be writtern as a strict ineguality. The result is that
iBoi +1 > |AO]° Therefore, not [A)| > [B)| and 74,7 B

B0 far it has been shown that % is realizable. Let £ be the
function which realizes . Notice that for all A in & if A # @,

then f(a) > f(@) + 1. Define g on & as follows for all A in §

g(a) = £(a) - (@) .

We have g(@) = 0. Furthermore, for all A in § if A # @, then
g(A) >0 because f(A) > f(¢). This completes the proof of axiom (i) in
theorem 3.14. Axiom (ii) follows immediately from 4.1. Therefore, »
is reslizasble by a probabiliiy measure on § if < §,% > satisfies bh.i.

From the assumption that & =/A(X), it follows that 4.1 is equivalent
to 2.7, 2.8, 2.9, 2.13, 2.14, 2.15 and 2.16. If we do not make this
stronger assumption, then three of these conditions are not equivalent to
4.1 but only imply 4.1. These three conditions are 2.9, 2.15 and 2.16.
'Therefore, each of the conditions in the list is a sufficlent condition
for *» to be realizable by a probability messure on &%, In chapter IT
it was argued that condition 4.1 is unacceptable for at least two reasons.
The strongest objection to the condition is that it implies that ~ is
transitive. It follows that every condition in the above list is
unacceptable.

In chapter IT we were able to give a condition which is a sufficignt

condition for the representability of % such that the condition does not
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impiy that ~ 1s transitive. This is condition 2.10.  We can ask whether
or not a similar result can be given in the case of the realizsbility of
o Specificaily, can we find a set of simple axioms which impése restric-
tiong on + in terms of the cardinalities of the elements of ‘% such
that the axioms have two characteristics? The axioms imply that v is
realizable by a probability measure and they do not imply that ~ is
transitive.

A simpie example can be given to show that the realizability of +
does not imply that ~ is transitive. Let & = {d, (a}, (b}, (a,b}}.
Define % through the following exhsustiive list of relationships.
{b) + @, (a,d) * @ and {a,b} ¥ {a). A realization of % can be defined
as follows. f{@) = 0, f({a)} = 1/2, £({b}) = 1 and #({a,b}) = 3/2.
f satisfies the condition in 3.14 and therefore % is realizabile by a
probability measure. ' For completeness, as in the proof of theorem 3.14,
we define for all A in & P(A) = £{A)/#(X) = 2/3 £f(A). P 4is a proba-
bility measure which realizes % and ¢ in definition 3.13 has a value
of 2/3. However, ~ is not transitive because -

{a,} ~ (b} , (b} ~ {a} and {a,b) ¥ (&} -

Therefore, the requirements which must be satisfied by the conditions

for which we are looking are not contradictory. We will begin with a

fairly simple set of axioms.

(4.2) < %,%> is a semiorder such that
(i) X v ¢.
(i1) TFor all A in § 1 ¢ * A,

(iii) There is at least one atom D of & such that D » g.
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4.2 is not a sufficient condition for + to be realizable by a probabil-
ity measure on & because 4.2 is not a sufficient condition for the
realizability of . A counterexample will be constructed where
X = {p,q,7,5,t} and § =F(X). We define > on & 1o consist of
exsctly 34 relstionships. For all A in & such that A # @ take
A >—¢. .To these El'relationships add the following three relationships
{p} » (a,8)

{p;a;8} » {r,t}

{p,9,8} + {q,s}

< &, 7> in this counterexample is very similar to < §,7> in the
counterexample which was given irn chapter IIT to show that 3.5 is not a
sufficient condition for the realizability of . Therefore, we can use
the results which were proven in the earlier counterexampie to simplify
~ the probf that < &, >, as defined here, is a semiorder. We only need
. to verify axioms (ii) and (iii) in definition 2.2. In (ii) there are
-two possible cases where the antecedent is true.

Case 1. ¢ does not appear in the antecedent. In the counterexample
to the sufficiency of 3.5 it was proved that the axiom is wvalid in this
. case.

-Case 2. ¢ appears in the antecedent. The only possible instances
of the axiom in this case are the following where A,B and C are all
different from ¢.

Av @& BYC oA ¥CvBY(d .
AYB&Cvr@P sA¥ry@vCyB.

Avr@&Br@doAvr@vBrg.
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Since a v ¢ for all A % ¢, each of these three instances of the axiom
must hold.

Therefore < §,» > satisfies axiom (ii). For axiom (iii) the only
instances for which the antecedent is tfue arise when A # @, B # ¢,
A »B and By @. The conclusion in these cases is AY D v D v ¢ for
all D in % If D#£ @, then DY@ holds and if D = @, then
A¥ D holds. Therefore axiom {(iii) is satisfied by < &, ¥ >.

< %, ¥ > obviously satisfies axioms (ii) and (iii) in 4.2. It hes
already been proved in the counterexample in chapter ITI that if an order-
ing ¥ satisfies (6}, then ¥ is not realizable. The ordering % which
we have defined satisfies (6) and therefore is not realizable.

This counterexample also proves that the following condition, which
is slightly stronger than 4.2, is not a sufficient condition for the

realizablility of *.

(4.3) <%, ¥> is s semiorder such that for all A,B in I
(i) if A and B are atoms of &, then A ~ B

(i1) if A £ @, then A ¥ @.

It is quite clear why 4.2 and 4.3 are not sufficient conditions for
the realizability of . They do not impose any restrictions on the
ordering in terms of the composition of the elements in $. We can

strengthen 4.% zs follows.

(4.4) <%, ¥> is an additive semiorder such that for all A,B in §
(i) if A and B are atoms of &, then A~ B

(11) if A # @, then A » ¢.

5




We will prove by counterexample that L.4 is not z sufficient condi-
tion for the realizability of +. Let X = {p,a,r,s,t,u,v,w; and let
& =(X). We define a real valued function F on the atoms of § which

has the following values.

£({p}) = 1.00
£({a}) = 1.39
£{{r}) = 1.20
£((s}) = 1.80
£({t}) = 1.20
£({u}) = 1.59
£({v}) = 1.82
£({w}) = 1.79

f 1is extended to every member of & additively. We define. » on §
according to the rule that for all A,B in §

A vBef(a) >£(B) +1 .
By lemma 3.4 we know that < §,>> is an sdditive semiorder. Axioms (1)
and (ii) in 4.4 are also satisfied by < &, *=>.

Consider the following numerical assignments.

i
Il

£({s,t,u}) = 4.59 > £({p,q,r}) + 1 = 3.59 + 1

5.00 > £({p,r,s}) + 1L = 4.00 + 1

f({q,v,w})
f({QJ S})

From these inegualities it follows that

il
Il

3,19 < £f{{p,r})} + 1 = 2.20 + 1 .

{s,t,u} v {p;a,r}
(22) {a,v,w] ¥ {p,r,s}

-1 {g,8) = (p,r} -
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We also have
f({t,u,v,w}) = 6.40 > f((p,q9,7,8)) + 1 = 5.39 + 1
and therefore
ft,u,v,w] 7 {p,q,r,s} .

We will define a new ordering »' on < by making exactly one change

in ¥. We take
{t,u,v,w} ~' {p,q,r,s8} .

We must prove that < ("> satisfies 4.h. It is clear that axioms
(1) and (ii) are satisfied by < $,%'> because they are satisfied by
< %, »> BSince the two elements whose relationship was sltered are dis-
joint and since their union equals X axiom {ii) of the definition of an
additive semiorder is satisfied by < §,v'> It remains to be proved that
< %,»'> 1s a semiorder. Unfortunately, X 1in this counterexample does not
gatisfy the restrictions placed on IXI by Axiom Checker. Hence, the pro-
gram cannot be used to verify that < §,»'> is a semiorder.

To prove that < §,»'> is z semiorder, first notice that the ordering
is irreflexive. For axioms (ii) and (iii) of definition 2.2 consider the
values assigned to every A in . There is no A in § such that

5.39 < f£(A) < 5.40
and there is no A in & such that

6.39 < £(A) < 6.40 .
To verify this, a computer program was written,which computes and lisis
values which are additively assigned to an algebra of sets from an assign-
ment to the atoms. The program will be briefly described after the counter-

example has been described.
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We can represent this situation with a diagram. '[' and ']' will
represent boundaries of intervals which include the endpoint. '(' and ')’
will represent boundaries of intervals which do not include the endpoint.
Hatched interwvals will represent intervals such that there is no A in

such that f(A) i1s in the interval.

5.39 5«?0 £.39 6.40
! I
!V//////////',f C e
Ir(/////////,g[ —W%—,
i _ ; i
{p;q,r,s} : {tyu,v,w}

Consider the second semiorder axiom. How can it fail in < §,7'>7
Since it holds in < &, >, it can only fall as a result of the change
which was made in the ordering when < §,¥'> was defined. That is, does
changing

{t,u,v,w} ¥ {p,q,r,s]
to T {t,u,v,v} » (p,q,r,s)
result in a false instance of the axiom? If the answer to this question is
na, then < J,7'> must satisfy the second semiorder axiom.

There are two cases where the second semiorder axiom possibly relies
on {t,u,v,w} v (p,q,r,s} for its validity. First, we have for some A,B
in

{t,u,v,w] v+ A
B4+ {p,g,r,s)
1B rA .
In this case in < J,¥'> we have
{t,u,v,wi >" A

Br'! {p,q,r,s}
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TBFA
7 {t,u,v,w} ¥' {p,sq,r,s} .
This would be a false instance of the axiom in < %,vi>. Howe#er, the
three assumptions concerning » are contradictory. From the diagram
above we get
£(A) £5.39
and £(B) >6.40 .
Therefore, B > A which contradicts the sssumption that -1 B ¥ A holds.
The second case arises when we have an A,B in & such that
A ¥ {p,q,r,s)]
{t,u,v,w} v+ B
TAF B .
In this case we have
A¥' {p,q,r,s}
{t,u,v,w} ¥7 B
7T A B
“?[t;u,v,W} *! {p,q,r,s} .
This would be a false instance of the axiom in < J,¥'>. However, the
three assumptions concerning % are contradictory. From the diasgram
above we get
r(a) > 6.40
and £(B) < 5.39 .
This implies that A ¥ B vwhich contradicts the assumption that TT1A ¥ B
holds.
This proves that the second semiorder axiom must hold in < G,*»'>.

Now ceonsider the third semiorder axiom. We again ask whether or not this
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axiom will fail as a result of the change which was made in » when <!
was defined? There are two cases where the third axiom possibly relies
on (t,u,v,w) ¥ (p,q,r,s} for its validity. First, we have for some
B, in %
{tyu,v,w} v B
B»C
1 {p,q,r,8} ¥ C .
In this case in < $,»'> we have
{tyu,v,w}>r' B
Byt C
T {t,u,v,w) ¥ [p,q,r,s)
'({p,q,r,s}‘f'.' Cc .
This would be a false instance of the axiom in <« §,¥'>. However, the
three assumptions concerning % are contradictory. From the diagram
above and the definition of + we have
£(B) < 5.39
and £(B) > f(C) + 1.
Therefore, since f({p,q,r,s}) = 5.39, {p,q,r;s} ¥ ¢ which contradicts
the assumption that = {p,q,r,s} » C holds.
The second case arises when we have an A,B in 3 such that
A+ 3B
B ¥ {p,q,r,s}
TA r{t,u,v,w} .
In < G,r'> we have
| A¥' B

B> {pyg,r,8}
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1A?! {t,u,v;w} o
1 {t,u,v,w} 7! {p,q;r,s}
This would be a false instance of the axiom in < §,r" >, Again the three
assumptions concerning » are centradictory. We have
f(a) >£(B) + 1

and ' £(B) > 6.40 .
Therefore, (&) > £({t,u,v,w}} + 1 and A ¥ (t,u,v,w} which contradicts
the assumptions.

This completes the proof that < &,v'> satisfies 4.h. »' is not
realizable. Assume that g is a function which realizes »'. From (22)
we have

g({s,t,u)) > eal{p,q,r)) + 1
gl{a,v,w}) > gl{p,r,s}) + 1
gl{p,r)) + 1 >gl{a,s)) .
Adding these inegualities and applying the additivity of g yields
g({t,u,v,w}) >g({p,q,r,8}) + 1.
Since g preserves the order of %', we conclude that {t,u,v,w} ¥’
{p,q,r,s) and this result is a contradiction.

To complete the counterexample a descriptlon of the computer program
mentioned above must be given. We will call this program Assign. The
mein arrays in Assign are IB, IS, IU and IAT. The arrays in Assigh are
very much like the arrays in Axiom Checker. The main differences are that
an array like R ig not used and the other arrays have more elements.

The upper limit of |X| 4s 10 in Assign. IR represents P(X) in
Asgign in the same way that BA rvepresents P(X} in Axiom Checker. IB

has 1,024 elements. IS has 1,02& elements and they contain the values
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assigned to the elements of . IAT has 10 elements which contain the
values assigned to the atoms of . IU is the atom pointer array in
Assign. It has 10 elements. The first seven elements of IU have exactly
. the same values as the seven elements in AP of Axiom Checker. The last
three elements of ITU have the values 129, 257 and 513, respectively.

The program first reads in the cardinslity of X. An upper limit is
defined so that a minimsl portion of each of the main arrays Wil}lbe used.
The values To be assigned to the atoms of ¥ are then read into IAT.
Using the AND function and the procedure used in Axiom Checker, the val-
ues of the elements of & are computed and placed in Array I5. The val-
uves are then printed out.

The program Assign was run for f and X as described in the
counterexample above. The 1ist of wvalues which were printed out verified
that the intervals (5.39, 5.40] and [6.39, 6.40) do not contain f(A) for
all. A in . This completes the proof that L.4k is not a sufficient con-
dition for the realizability of ».

This result is somewhat surprising. 4.4 is similar to 1.13 except
that 4.4 does not have an axiom which asserts the transitivity of .
However, the transitivity of %> can be derived from the semiorder axioms.
If A B and B * C +then either A vC or B »B. Since B¥ B is
false, we conclude that A+ C. 1.13% is sufficient for the realizability

of . What differences are there between these two conditions which
explain the fact that 4.4 is not a sufficient condition for the realiza-
bility of %2
Consider the proof which was given to show that 1.135 is a sufficlent

- condition for the realizabiliiy of w. We can begin a similar proof in
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the case of 4.4, Everything is the same up to the case where we are con-
sidering an A,B in %  such that ,Al = |B1.= 2.  Cage i, given in the
proof that lolifis-a sufficient condition for %he-realiiability of %,
can be reconstructed in the new proof. The argument in case 2 breaks down
in the semiorder case., The problem is that ~ 1is not transitive in the
semiorder case. In particular, in the counterexample given above we have
f{{p,r}) = 2;20 and £({s,u}) =‘50595 Therefore, {s,u} %' {p,r} and
this relationship violates case 2 of the. earlier proof. |
Condition 4.4 is also similar to condition 2.10 which has been proved
to be a sufficlient condition for thelrepresentability‘of . 2.10 does
rot imply that ~ 1is transitive. These remarks suggest that when ~ 1is
not transitive, the representability of % follows from fairly netural

conditions but the realizability of % requires very strong conditions.

(4.5) < &,¥> is an additive semiorder such that for all A,B In I
(i) if A an@ B are atoms of &, then A~ B

(ii) ir |A] > |B|, then A ¥ B.

4.5 is a stronger version.of h.h but 4.5 still is not a sufficient
condition for the realizability of %. A counterexample can be constructed
from f, as defined in the proof that 4.4 is not a sufficient condition
for the realizability of Y. ILet X, § and f be as in that counter-
example. Define the function g on & as follows for all A in §

g(a) = £(a) +5 .
In this case we have a diagram similar to the one given earlier, except

that the values have been increased.
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25.39 25.40 26.39 26.40
| ] |

| -

P o \Y772777%.

Kr77777) Y,

| | i !
{p,;q,r, s} (tyu,v,w}

We define < &, 7> and < §,7'> exactly as before and we see that
< §,r'> is an additive semiorder which satisfies 4.5 (i). To see that
k.5 (i1i) holds notice that for all A in §

if |a] =1, then 6 <g(a) <7

if |A] =2, then 12 < a(a) < 1k
if Al =3, then 18 <g(A) <21
if [A] =4, then 24 < g(a) <28
if |A] =5, then 31 < g(A) < 3k
if [A] =6, then 38 < g(a) <lo

ir Al =7, then 4k < g(A) <U6 .
Since g(X) = 51.79, 4.5 (ii) is satisfied by < &, ¥> This implies
that < §,¥'> satisfies 4.5 (ii). However, ¥' is not realizable because
'the relationships in (22) hold in < §,%'>. Therefore, L.5 is not a suffi-

cient conrdition for the realizability of Y.

(4.6) < g,%> is an =dditive semiorder such that for all A,B in

R

(i) if A and B are atoms of &, then A~ B
(11) a v ¢

(1ii) A+ B - |a] > [B] .

k.6 is not a sufficient condition for the realizability of . We

construct a counterexample from X = {v,q,r,s,t,u,v,w,x} and & =7F(X).
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As ususl, we begin with a function f defined on the atoms of S
£({p})
£((a))
£({x})
£((s})
£({t})
£{(u)) = 1.15
£((v})

£({w))
£({x))

We extend f additively to all elements of & and define » on & by

1.45

1.02

1.19

1.16

1.16

1.1k

i

1.19

1.19

the rule that for all A,B in
A}-B(—)f(.A)?_f(B) +1 .
Lemma 3.4 implies that <&,%> is an additive semiorder. (i) and
(ii) of 4.6 are obviously satisfied by < &,¥>. The program Assign was
run on this assignment to the atoms of &%. From the output the following

table was constructed. For all A in £

if [A] =1, then 1.02 < f(A) < 1.45
if |A] =2, then 2.16 < f(A) < 2.6k
if (Al =3, then 3.31 < f(A) < 3.83
it |A] =4, then k.47 < £(A) <5.02
if [A] =5, then 5.65 < f(A) <6.18
ir |A] =6, then 6.82 < f£(A) < 7.34
if |A] =7, then 8.01 < £(A) <8.49
if |A| =8, then 9.20 < £(A) < 9.63 .

To complete the table £(X)

10.65.
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Assume that A v B for some A,B in &. The table above shows that

la| # |B|. Assume |B] > |A|. Let |B] =m and |A| = n. Let A ‘be

1
an element such that lAll =n and f(Al) i5 the maximum value for those
elements In & with cardinalities of n. ILet Bl be an element such
that |B| =m and £(B) is the minimum value for those elements with

cardinalities of m. From the table above, since mn > n, f‘(Bl) > f(Al).
We have f(B) > £(B)) > f(A;) > £(A). Since A v 3B, £(A) >£(B) +1
and therefore f(B) > f(B) + 1. This is = contradiction. Therefore, if
A ¥ B, then |A] >|B|. This proves that < %,v> satisfies 4.6,

We have the following numerical assignments.

[}

({s,t,u,x}) h*66‘2 f([P:Q:f]) +1 =_5=66_+ 1

Il
[H

f({a,v,w}) = 3.35 > £({r,s)) + L =2.35 + 1

f({qu])

]

72.18 <f{{r}) +1=1.19+ 1.
From these inequalities it follows that

| {s,t,u,2} v {p,q,7}
~(23) | (g,v,w) + {r,s}

T {a,s] » {r}
We also have
£({t,u,v,w,x}) = 5.83 > £({p,q,r,8)}) + 1L = 4.83 +1 .
Therefore,
{t,u,v,w,x} * (p,a,r,s)}

From the output of Assign it was verified that there is no A in §

gsuch that
b.82 < £(A) <4.83

and there is no A in % such that

5.82 < £(&) < 5.85 .
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We can represent this in the following diagram.

L.82 4.83 5.82 ~ 5.83
| ' i !
V) o 0P
&6444464442 EOOOOGOCCQﬁ
] _ [ } |
{P:qJTJ s) {t:u;v;w;x}

We define +'!' on $§ by making exactly one change in Y. We take
{t,u,v,w,x} ~' {p,q,r,s} .
An argument similar to the one given in the counterexample which follows
4.4 can be given to show that < §,7'> as defined above is an additive
semiorder. Axioms (i), (ii) and (iii} of 4.6 are obviously satisfied by
< g, >,

Therefore, < &,*'> satisfies 4.6. %' is not realizable., If it
is realizable, then there is a function g such that g preserves the
relationships in (23). Hence,

g({s,t,,x)) > alp,a,r}) + 1

gl(q,v,w}) > al(r,s}) +1

gl{z}) + 1 >gl{q,s}) -
Adding these inequalities and applying the sdditivity of g yields

gl(t,u,v,w,x}) > gl{p,q,r,8}) + 1 .
| This implies the contradictory result that
{t,u,v,w,x] 7' (p,q,r,s)

Therefore, 4.6 is not & sufficient condition for the realizability of %.

Conditions 4.5 and 4.6 are extremely strong conditions. It is rather
surprising to find that they are not sufficient conditions for the real-

izability of ~. Conditicons similar to these with the relation =~
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replacing ~ can also be given. Since = is transitive it seems that
these conditions might be sufficient for the realizability of . We

will prove that in fact this is not the case.

(4.7) <%, >»> is an additive semiorder such that for all A,B in &
(i) if A and B are atoms of %, then A= B

(11) if [A] > |B|], +then A » B.

The counterexample given to show that 4.5 is not a sufficient con-
dition for the realizability of ¥ also shows that 4.7 is not a suffi-
clent condition for the realizability of ». We only need to verify that
< §,r'> in that counterexample satisfies 4.7 (i). Let A,B be atoms of
3 where X,5,f, ¥ and ' are defined as they are in the counterexample
which was given to show that 4.5 is not a sufficient condition for the
reallizability of ».

For all D in &% we have A ¥ D if and only if D = d if and only
if B ¥ D. Furthermore, D ¥ A if and only if |D| >2 if and only if
D ¥ B. Therefore, A=B for all atoms of . < §,7'> satisfies 4.7
and %' is not realizable which completes the proof that 4.7 is not &

sufficient condition for the realizability of 7.

(4.8) < 9,%v> is an additive semiorder such that for all A,B in $
(i) if A and B are atoms of &, then A=~ B
(11) A > ¢

(iii) if A ¥ B, then |a| > [B].

4.8 is not a sufficient condition for the realizability of +. To

construct a counterexample in this case we use the counterexample which
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was given to prove that 4.6 is not a sufficient conditibn'for the real-
izability of 7. We use it in the same way that we used‘the counter-
example which follows 4.4 in proving that 4.5 is not a éufficient condition
for the reallzabllity of +. Let X, % and £ be as in the countérexample
which follows 4.6. For all A in & define g as follows.

g{a) = £(a) +1 .

The table given in the earlier counterexample must be modified. We

now have for all A in
iz |a] =1, then 2.02 < g(a) <2.45
if |Al =2, then k.16 < g(A) < L4.6h4
if lal =3, then 6.31 <g(a) <6.83
if |A] =%, then B8.47 < g(A) < 9.02
if |A] =5, +then 10.63 < g(A) < 11.18
if |A] =6, +then 12.82 < g(a) < 13.34
if |A] =7, then 15.01 < g(A) < 15.49

if |al =8, then 17.20

1A

g(4) < 17.63 .

Furthermore g(X) = 19.65. Axiom (ii) clearly holds in < &, 7>, Tor
(11i) let A * B. From the above tadle |A| # |B|. A4s in the earlier
counterexample, we can prove that |A| < 'B[ is contradictory. There-
fore, |A| > |B| and we see that axiom (i1i) must hold.

For axiom (i) let A and B be atoms of $. and let D be any -
element in §. A ¥ D if and only if D = @ if and only if B 7D,

D ¥ A& if and only if |D| >2 4if and only if D v B.

We define < %,»'> exactly as we did before. Since ' preserves .
the relationships in (23) we know that %! is not realizable. Therefore,
4.8 is not a sufficient condition for the realizebility of % because
< %,7'> as defined above satisfies 4.8 but *' is not realizable.
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It is interesting to notice how close ¥' in the above counter-
example comes torbeing realizable. From the_above table < %,?> satisfies
the axiom that for all A,B in & A wBe [A] > [Bl. This axiom is known
to be a sufficient condition for the realizability bf 7. When we define
7t we take

{t,u,v,w,x} ~' {D,q,7,8} -
This means that the axiom has exactly one false instance in < §,»' >

Conditions 4.4, 4.5, 4.6, 4.7 and 4.8 show that we can place
extremely strong conditions on an ordering 3 withoui foreing 3 to be-
realizeble. Each countefexample exploite the fact that ~ is not fransi-
tive. In each case we start with s relationship of the form A +B. A
new ordering is defined in which we takes A ~ B, A gnd B are chosen
g0 that when this i1s done no other relationships need to be changed. That
is, we have AN B = ¢ and A UB = X. In the definition of an additive
semiorder we have the axiom that for all A,B,C in § if AN C=BNC-=
@, then
(24) ATBeAUC »BUC .

Due to our choice of A and B, (24) does not force us to make any
other changes in the ordering. Notice that in each of the counterexamples
we have given, we have a C in § such that C~B and CNA % ¢, Iz
~ is transitive, then when we take A ~ B we are also forced to take
A ~ C. TFor the new ordering to satisfy (24) we must now make several
changes in the o¢ld ordering. We would definitely not be able to preserve
- the relationships which lead to the contradictions.

Therefore, it is precisely the fact that ~ is not transitive that

leads to the counterexamples. The counterexample which follows 4.8 points
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this out wvery clearly. The ordering' »1 fails to be reélizable'because
it lacks exactly one relationship of the form A » B. This one relation-
ship can be omitted and K §,7!'> will still satisfy (23) just because ~
is not transitive.

In one sénse this gives an indication of the 1imitétioné which are
imposed on. orderings when the indifference relation can be non-itransitive.
In particular let us interpret A ¥ B to meanlthat "A is definitely more
probable than B. Suppose that we begin constructing the theory of prob-
ability from this concept. We do not want our indifference relation nec-
essarily to be {transitive so we assume that < §, v > is an additive
semiorder where < d1is the set of events. BSince we would like to be able
to construct finitely additive probability spaces on &, we naturally
want to find conditions which will guarantee that % 1s realizable. That
is, we want to find axioms such that if an additive semiorder satisfies
these axioms, we will know that % 1is realizable by a probability measure
on .

Eopefully, the axioms will not be too complex. The second axiom in
theorem 3.10 is an extremely strong axiom. The notion of a characteristic
function cannot be formuleted in first~order logic. Another problem is
that it has infinitely many instances even when & 1s finite. This fol-

lows because it allows any relationship of the form A > B or 1C*D

-

to be repeated any number of times.
The conditions discussed in chapter 2 are less complicated in the

sense that they are finiltary. However, those which imply that =+ is

realizable also imply that ~ 1s transitive. Therefore, they are unac-

ceptable. k4.4, 4.5, 4.6, 4.7 and 4.8 all have the virtue of not implying
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that =~ is_transitive. However, they do not imp;y that » 1is rggliza‘olea
Even these four conditions are stronger conditions than we would generally
be willing to impose on ¥».

The remarks concerning the finite axiomatizabiliﬁy of the theory of
realizable subjective probability structures will apply to the theory of
realizable semiorders. < §,> > is a realizable semiorder if < §, > is
a semiorder and » 1is realizable. Let T bhe the class of all realizable
semiorders. ©Since we have assumed that § is an algebra of sets on X,

T is not axiomatizable by a set of universal sentences, finite or infinite.
As in chapter I the proof of this result is unsatisfactory in thersense
.that it follows from the closure assumptions on . The question whether

or not T dis finitely axiomstizable is an open problem.
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APPENDIX

The actual program instructions for the two programs .described in
the paper are given below. The programs were written in Fortran IV for
a J2 K T090 which has the AND and OR functions available in the
assembler. Control cards are described in the comments at the beginning

of each program.

C AXTOM CHECKER
¢ NN = THE NUMEER OF ATOMS

¢ ISS - SUBJECTIVE PROBABILITY OR
C SEMTORDER SWITCH

c CONTROL CARDS

C 1  NUMBER OF ATCMS IN COL 1

C 2 ATOMIC VALUES 7F6.2 STARTING

C IN COL 1

C | 3 (C0L1=0 FOR S.P.S

c COL 1 = 1 FOR SEMIORDERS

C 4 N = NUMBER OF CHANGES TO MAKE

c IN THE RETATIONS ARRAY. COL 1-3
C 5-N THE CHANGES IN R

C COL 1-3 ROW I FOR A(I)

c  COL 4-6 ROWJ TOR A(J)

c ¢or 7,8 -1,0,1 OR - 2,0,2

o FOR A(I) LT, EQ, GT A(J)
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C N+ 1 END OF GROUP

C COL 1 =8 IF MORE GROUPS
C FOLLOW
c COL 1 = 9 IF LAST GROUP

DIMENSION IA(128),TU(7),IR(228,128),Av(7)
INTEGER FV{128),4v2(7)
COMMON IA,IU,IR,AV,¥V,AV2
EQUIVALENCE (X,IX),(Y,I¥),(W,TW),(Z,Iz)
LOGICAL HOP
DO 1 I=1,128
TA(I)=I-1
1 7v(I}=0.0

IU(1)=2
TU(2)=3
1U(3)=5
IU(4)=9
TU(5)=17
TU(6)=33
TU(7)=65

100 ISTR=ISTR+1
WRITE(6,919) ISTR

919 FORMAT(1H1,16HSTRUCTURE NUMEER,I5)

C WIPE OUT RELATIONS

DO 2 I=1,128
DO 2 J=1,128

2 IR(I,J)=-3
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DO 3 I=1,128
3 FV(I)=0
C READ IN NO OF ATOMS AND ATOMIC VALUES
READ(5,900) NN
IF(NN.GT.7) GO TO 1001
READ(5,901) (AV(J),Jd=1,NN)
900 FORMAT(I1)
901 FORMAT(7F6.2)
MM=2%*NN
DO 9 I=1,NN
9 AV2(I)=100.0%AV(I)+5
¢ COMPUTE VALUES OF THE ALGEBRA
DO 10 I=1,MM
DO 10 J=1,NN
KK=TU(J)
Z=AND{IA(I),IA(XKK))
IP(IZ.GT.0) FV{I)})=FV(I)+ava(dJ)
10 CONTINUE
WRITE(6,902) (FV(I),I=1,MM)
902 FORMAT(1HO,1017)
¢ SET UP RELATIONS
C -1,0,1 FOR S.P.8 LEQ,EQUIV,GEQ
C <2,0,2 FOR SEMIORDERS LSS,IND,GTR
READ(5,903) ISS
903 FORMAT(I1)

IF{ISS) 1000,20,30

95



20

22

21

DO 28 I=1,MM

DO 28 J=1,MM

IF(FV(I)-FV(J)) 23,22,21 - -

IR(T,J)=0
IR(J,1)=0
GO TO 28

IR(I,J)=1

TR(J,T)=-1

23

28

30

32
35

31

35

38

GO TO 28

IR(T,J)=-1

IR(J,I)=1

CONTINUE

GO TO 50

DO 38 I=1,MM

DO 38 J=1,MM
IF(FV(I)-(FV(J)-+1)) 32,31,31
IR(FV(I)-(FV(I)+1)) 35,33,33
IR(I,J)=0

IR(J,I)=0

GO0 TO 28

IR(I,J)=2

IR(J,I)=-2

GO TO 38

IR(I,J)=-2

IR(J,I)=2

CONTINUE
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C READ IN SPECIAL RELATIONS
50 READ{5,910) IRR
910 FORMAT(I3)
IF{IRR.LE.O) GO TO 61
DO 60 I=1,IRR
READ(5,911) IROW,ICOL,IREL
91). FORMAT(213,12)
IF(IREL.EQ.0) GO TO 55
IF(IREL.EQ.-3) GO TO 56
TR( IROW, ICOL)=IREL
IR(ICOL, TROW)=-TREL
GO TO 60
55 IR(IROW,ICOL)=0
IR(ICOL,IRCW)=0
GO TO 60
56 IR(IROW,ICOL)-3
IR(ICOL, IROW)=-3

60 CONTINUE

C DROP OUT WHEN ALGEBRA IS READY FCR TESTING

61 DO 51 I=1,MM
WRITE(6,912) I,(IR(I,J),J=1,MM)
912 FORMAT(IHO,I3,5X,5012)
51 CONTINUE
IF(ISS) 1000,200, 300
¢ 8.P.8. TEST

C CONNECTIVITY
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200 HOP=.FALSE.

DO 210 I=1,MM
DO 210. J=1,MM
IF(IR(I,J).GT.-3) GO TC 210
WRITE(6,920) I,J

920 FORMAT(19H$FAILS CONNECTIVITY,ElS)
HOP=,TRUE.

210 CONTINUE
IF(HOP) GO TC 215
WRITE(6,921)

921 FORMAT(20H$PASSES CONNECTIVITY)

C TRANSITIVITY

215 HOP=,FALSE.
DC 220 I=1,MM
DO 220 J=1,MM
DO 220 K=1,MM
IF(IR(I,J)nLT,0.0R?IR(J,K).LT.O) GO 7O 220
IF(IR(I,K).GE.0) GO TO 220
WRITE(6,930) I,J,K

930 FORMAT(1SH$FATLS TRANSITIVITY,3IS)
HOP=.TRUE.

220 CONTINUE
TF(HOP) GO TO 225
WRITE(6,931)

931 FORMAT(20H$PASSES TRANSITIVITY)

CAGT CRIEQ O
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225 HOP=,FALSE.
DO 230 I=1,MM
IF(IR(1,I).1E.0) GO TO 230
WRITE(&, 940)
940 FORMAT(24H$FATILS NORMAL O RELATION,ZI5)
HOP=.TRUE.
230 CONTINUE
TF(HOP) GO TO 235
WRITE(6,041)
941 FORMAT(25H$PASSES NORMAL O RELATION)
C TEST 0,X RELATION
235 IF(IR(1,MM).IT.0) GO TO 2Lho
WRITE(6,950)
950 FORMAT(1S5H$FATILS X O TEST)
GO TO 245
240 WRITE(6,951)
951 FORMAT(16H$PASSES X O TEST)
C TEST ADDITIVITY
245 HOP=.FALSE.
DO 270 I=1,MM
DO 270 J=1,MM
DO 270 K=1,MM
X=AWD{TA(I),IA(K))
IF(IX.GT.0) GO TO 270
Y=AND{TA(J),TA(K))

TF(IY.GT.0) GO TO 270
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7=0R(TIA(I),IA(K))
W=0R(TIA(J),IA(K))
DO 260 L=1,MM
IF(1Z.5Q.IA(L)) Li1=L
IF(IW.EQ.TA(L)) L2=L
260 CONTINUE
IF((IR(I,J).GE.0).AWD.(IR(L1,12) . LT.0)) GO TO 265
IF{(IR(1,J).LT.0) .AND.{IR{L1,12).GE.Q)) GO TC 265
GO TO 270
265 WRITE(6,920) I,J,L1,L2
960 FORMAT(1TH$FAILS ADDITIVITY,2I5,5X,2I5)
HOP=.TRUE.
270 CONTINUE
IF(EOP) GO TO 290
WRITE(6,921)
961 FORMAT(18H$PASSES ADDITIVITY)
290 WRITE{6,962)
962 FORMAT(1H$,44HEND OF SUBJECTIVE PROBABILITY STRUCTURE TEST)
GC TO 1050
SEMIORDER TEST
IRREFLEXITIVITY
300 HOP=.FALSE.
DO 310 I=1,MM
IF(IR(I,I).NE.O) GO TO 309
GO TO 310

309 WRITE(6,980) I
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980 FORMAT{22H$FAILS IRREFLEXITIVITY,IS)
HOP=.TRUE.

310 CONTINUE
IF{HOP) GO 7O 320
WRITE(6,931)

981 FORMAT(23H$PASSES TRREFLEXITIVITY)

¢ TEST 2 ND AXIOM

320 HOP=.FALSE.
DO 340 I=1,MM
DO 340 J=1,MM
IF{IR(I,J3).LT.2) GO TO 340
DO 330 K=1,MM
DO 320 L=1,MM
IF(IR(X,L) .ILT.2) GO TO 330
IF(IR(T,L)}.EQ.2).OR. (IR(X,J) .EQ.2)) GO TO 330
WRITE(6,970) I,J,K,L

970 FORMAT(1TH$FAILS 2 ND AXIOM,4I5)
HOP=,TRUE.

330 CONTINUE

240 CONTINUE
IF(HOP) GO TO 350
WRITE(6,971)

971 FORMAT(18H$PASSES 2 ND AXIOM)

C TEST 3 RD AXIOM
350 HOP=.FALSE.

DO 365 I=1,MM
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DO 365 J=1,MM
IF(IR(I,J).1LT.2} GO TO 365
DO 360 K=1,MM
IF(IR(J,K)}.LT.2) GO TO 360
DO 355 L=1,MM
TF{(IR(I,L).LT.2) .AND.(IR(L,K).LT.2)) GO TO 356
%55 CONTINUE
G0 TO 360
356 WRITE(6,990) I,J,K,L
990 FORMAT(17TH$FAILS 3 RD AXIOM,4I5)
HOP=. TRUE.
360 CONTINUE
365 CONTINUE
IF(HOP) GO TO 370
WRITE(6,991)
‘991 FORMAT(18H$PASSES 3 RD AXIOM)
370 WRITE(6,993)
993 FORMAT(22H$END OF SEMIORDER TEST)
GO TO 1050
1001 WRITE(6,1020)
1020 FORMAT(L4SH$X SIZE GREATER THAN 7 SO SKIP THIS STRUCTURE)
1050 READ(5,900)NN
IF(NN.EQ.8) GO TO 100
IF(NN.EQ.Q9) GO TO 1330
GO TO 1050

C SWITCH LESS THAN O FRINT MESSAGE
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C AND TERMINATE THIS STRUCTURE ONLY
1000 WRITE(6,1010)
1010 FORMAT(36H$TERMINATE FOR SPS/SEMIO VALUE LSS O)
GO TO 1050
1330 WRITE(6,1011)
1011 FORMAT{26H$ALL STRUCTURES TESTED EOJ)
RETURN

END
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Q

ASSIGN
CONTROL CARDS
1 CARD WITH PQRSTUVWXY IN COL 1-10
2 NUMBER OF ATOMS IN I2 CCL 1,2

1-NK ATOMIC VALUES IN I4 COL 1-4

ALL INPUT, OUTPUT ETC DONE IN
INTEGER FORMAT
DIMENSTON IB(1024),IAT(10),10(10),IW(20),10T(10),I5(102k),NuM(1024 )
COMMON IB,IAT,IU,IW,I0T,IS,NUM
EQUIVALENCE(Z,IZ)
DO 10 I=1,102k
10 IB(I)=I-1 =
1U{1)=2
IU(2)=3
TU(3)=5
TU(4)=9
10(5)=17
10(6)=33
TU(7)=65
1U(8)=129
10(9)=257
IU(10)=513
READ(5,910) IW
910 FORMAT(20AL)

READ({5,900) NN
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900 FORMAT(I2)
¢ NN = NO OF ATOMS
DO 20 I=1,KN
READ(5,902) TAT(I)
902 FORMAT(I4)
20 CONTINUE
MM=2% %11
DO 25 I=1,MM
I18(1)=0
NUM{I}=0
L. 25 CONTINUE
DO 30 I=1,MM
DO 30 J=1,NN
KK=TU(J)
Z=AND(IB{I),IB(KK))
IF(IZ.1E.0) GC TO 30
I8(I)=18{I)+IAT(J)
NUM(I)=NUM(ZI)+1
30 CONTINUE
WRITE(6,940) MM
ohO FORMAT(1H1,11HTEERE ARE , I4,25H- ELEMENTS IN THE ALGEERA)
DO 60 KI=1,NN
DO 50 T=1,MM
IF(NUM(I).NE.KL) GO TO 50
JI=0

ICNT=0
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DO 4o J=1,NN
KK=TU(J)
Z=AND(TB{I),IB(KK))
IF(IZ.1LE.0) GC TO 4O
JI=JJ+1
TOT(3J)=IW(J)
ICNT=TCNT+1
40 CONTINUE
LL=ICNT+1
DO 45 J=LL,10
45 10T(JF)=IW(J+10)
WRITE(6,950) (10T(J) ,J=1,10),I8(I)
950 FORMAT(1H ,10X,1041,5%,1H=,5X,I10)
50 CONTINUE
60 CONTINUE
RETURN

END
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