










































































































« al,ol>"'" <a ,0 >, < e,o >)n n n+l

where for each i; l, ... ,n + 1 either o. ; 0
1

or o. ; 1­
1

Y will

denote a non-empty subset of Z which consists of a set of sets of the

form

where for each i=l,ooo,n either o. ; 0
1

or o. ; 1­
1

The set Y

mimics a subset of the set of the characteristic functions of all the

elements of 7P (A) .

Every y in S determines a vector in L; L(S): namely, the

characteristic function of (y). To simplify the terminology every y

in S will be identified with its corresponding function in L. Thus

S c L(S) and S is an independent basis for L(S). With this conven-

tion Z above becomes the power set of Sand Y mimics a non-empty

subset of the power set of A. The binary relation r defined on Y

is realizable if there is an additive function f defined On L such

that for all y, z in Y

y r z H fry) ~ f(z) + 1 .

Theorem 3.8. Let the binary relation 'r be defined on Y. r is real-

izable if and only if for all x in Y for all sequences xo ' .. ""k'

YO""'Yk' wl '" .,w,e, zl'" .,z,e in Y for all i such that l<i<k

and for all j such that 1 < . < ,e if Xi ..,... Yi' ,w. 'r Zj and if_ J
J

,e < k + 1, then

( i) '1 x r X

k ,e k ,e
( ii) if X

o
+ L: x. + L: z. ; Yo + L: Yi + L: Wi ,

i;l 1 i;l 1 i;l i;l
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then if .e < k and

if .e = k or .e = k + 1 .

We will first prove that the condition is a necessary condition for

the realizability of 'r. Let f realize 'r and let x, xo' ... '''k'

YO,.o·'Yk' wl,·oo,w.e' zl'···'z.e satisfy the hypothesis of the condition.

For (i) if x 'r x, then f(x) ~ f(x) + 1 which is contradictory. Hence

I x 7 x for all x E Y.

For (ii) notice that we have

f("k) ~ f(yk ) + 1

f(zl) + 1 > f(wl )

Summing these inequalities yields

i=l

k

L
i=l

f(x.) +
1

.e
L f( z.) + .e

1

k .e
~ L fly.) + L f(w.) + k 0

i=l 1 i=l 1

This implies

.e -
k

k> L
i=l

.e
f(yi ) + L f(wi )

i=l

-[r f(x.) + I: f(Z.)]
i=l 1 i=l 1
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Applying f to the antecedent of (ii) yields

(8)
k

L
i=l

f(x.) +
~

.£

L
i=l

f( z. )
~

From (7) and (8) it follows that

k

L
i=l

.£

L
i=l

f( w.) •
~

We are assuming that k > 0 and .£ > O. We have two cases and both

cases use equation (9).

Case 10 k = O.

Case 1.1 . .£ = O. We have f(yO)? f(XO)' This implies f(yO) + 1

> f(xO)' Thus,.., Xo '?' YO'

Case 1.2. .£ = 1. In this case from a consideration of our original

list of inequalities we see that (9) becomes

We have f(yO) > f(x
O

) - 1. Thus, f(yO) + 1 > f(x
O

) and again

.., Xo '7 YO'

Cases 1.1 and 1.2 correspond to the second part of the conclusion in

(ii) .

Case 2. k > O. There are three subcases.

Case 2.1. .£<k - 1. We have f(yO) ? f(XO) + 1 and therefore

yo '?' xo .

Case 2.2. .£ = k. As in case 1.1 we get , Xo '7 yO'

Case 2.3. .£ = k + 1. As in case 1.2 we get ., Xo 'r yO'
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This completes the proof that the condition is a necessary condition

for the realizability of ~, To prove that the condition is sufficient

assume that the condition is satisfied by r defined on ~, Notice that

Y is non-empty, finite and rational, Consider the set W defined as

follows,

W ~ (x - y - e x, Y E Y)

U(y + e - x : x, y E Y}

It is obvious that W is non-empty, finite, rational and symmetric, We

define the relation ~ 0 on W as follows, For all elements x - y - e,

y + e - x in W

x - y - e '" 0 if and only if x r y

y + e - x ~ 0 if and only if -r x '7 y

We must prove that our hypothesis implies that this definition is justi-

fied, We must show that for all zl,z2 E W if zl

if and only if z2 ~ 0,

Case 10 for in Y, We have

Yl + x ~ Xl + y, If x >- y, then k ~ 1, P, ~ 0 and hence by the

hypothesis xl 7" Yl' Similarly xl 7" Yl implies that x,... Yo There­

fore, x - Y - e ~ 0 if and only if Xl - Yl - e rr O.

Case 2, Y + e - x ~ Y + e - x
1 1

for in We have

Xl + Y ~ Y
l

+ x, If 7 x T y, then k ~ 0, p, ~ 1 and hence by hypoth-

esis implies Therefore,

y + e - x "Ii'- 0 if and only if y1 + e - Xl '7i' O.

This case cannot arise becausex -Case 30 Y -e~y +e x1 - 1 0

e is independent of the elements in Yo
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This completes the proof of the justification of the definition of

'1l O. Let N = (z E W : z 'fr 0). We will prove that if f realizes N

in W, then f can be used to define a realization of T. Since 7-

is irreflexive and Y is non-empty we have ',x ~x for some x in Y.

This means that e ~O holds in W but - err 0 does not hold in W.

Let f realize N in W. It follows that f(e) > O. Define g on L

as follows. For all x E L

g(x) = f(x)/f(e)

The function g realizes r. Let x,y be in Y.

x '< Y if and only if x - Y - e 'r<- 0

X 7 Y if and only if x - Y - e E N

x T Y if and only if f(x)? f(y) + f(e)

x '< y if and only if g(x)? g(y) + 1 .

Therefore, to complete the sufficiency part of the proof it only

remains to be shown that the hypothesis implies that N is realizable

in W. We will prove that (i) and (ii) of theorem ).7 hold. After this

is proved we can take N for (x EX: x ~ 0) in theorem ).7 and the

realizability of N in W will be established.

Condition (i) follows from the fact that W is symmetric. For (ii)

let zO, ... ,zn_l be any sequence in W such that zi ~ 0 for each

i= l, ... ,n - 1. These elements must have one of two forms. For each

i = l, ... ,n - 1 either z i = Xi - Yi - e or zi = Yi + e - Xi for

some in Y. Let us relabel the so that as a result we have

Z.
,~

y. - e for i
~

1, ... ,k
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where xi' Yi E Y for all i such that 0 < i < n. The assumption in

(ii) of theorem 3.7 can now be written as

(10) Z +o (x. - y. - e)
J. J.

kH
+ I:

i=k+l
(y. + e - x.) = 0 •

J. J.

We also must have for some

in Yo Recall that e cannot be written as a linear combination

of the elements in Yo Therefore, e must occur the same number of

times negated as unnegated in (10). This means there are only two pos-

sibilities for k and £ in (10). Either k = £ + 1 or k = £ - 1.

If k =£, then Zo does not contain e and hence Zo i W which is

impossible.

Case 10 k = £ + 10 In this case e must occur unnegated in zO°

Thus Zo must be of the form X
o

+ e - YO for some xo,yo in Y.

From (10) we have

(11)
k

I:
i=O

x. +
J.

k

I:
i=O

y. +
J.

kH

I: Xi
i=k+l

By assumption zi 7/ 0 for all i such that 0 < i < n. This means

that for all i such that 0 < i < k and I Xi 'r Yi for all

i such that k + 1 < i < n - 1. Therefore, applying our hypothesis

where £ < k yields This means y - x - e (::'0o 0
and hence

Xo + e - YO ~ 0 or Zo 4. 00

Case 2. k =£ - 1. In this case e is negated in z00 That is,

is of the form Xo - e - YO for some
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holds and we can apply the hypothesis for the case £ ~ k + 1. This

yields ., Xo 'r YO' This meanS YO + e - Xo '" 0 and hence Xo - YO - e

~ 0 or zO;< O.

This completes the sufficiency part of the proof and hence completes

the proof of theorem 3.8. An analysis of the sufficiency part of the

proof which was given above shows that we can replace (ii) in theorem 3.8

with a somewhat weaker condition.

Theorem 3.9. Let the binary relation .,... be defined on Y. >- is

realizable if and only if for all x in Y for all sequences xO"",~,

in Y for all i such that 1 < i < k

and for all J' such that 1 _< J' < £ <f '- and if~ xi r yi' ., wj ., Zj'

£ ~ k - 1 or £ ~ k + 1, then

( i:l.) if
k

L xi +
i~l

~ y +o
£

L
i~l

w. ,
~

then if k 1 and

if £ k + 1 .

The conclusion of (ii) in 3.9 contains exactly the two cases singled

out in the proof that the condition in 3.8 is sufficient for the realiza-

bility of r. Therefore, the proof which was given to prove that the

conditions in 3.8 are necessary and sufficient conditions for the real-

izability of r will establish theorem 3.9. It is interesting to see

how the condition in theorem 3.9 implies the condition in theorem 3.8.
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Let satisfy the assump-

tions in (ii) of theorem 3.8. There are two cases to be considered.

Case 1. A < k - 1. Since Y is not empty and since ~ is irre-

flexive by assumption, we have IX r X for some x in Y. To our list

of relat ionships between the wi and the zi we add ',x ',- x exactly

k - 1 - A times. We now have a sequence xO""'~' YO""'Yk'

which satisfies the

hypothesis of (ii) in theorem 3.9. Therefore, as desired.

Case 2. A ~ k. In this case we add 'x 7" x for some x in Y

to our original sequence exactly once. Let A1 ~ A + L Applying (ii)

in theorem 3.9 where Ai A + 1 ~ k + 1 yields ,X
O

T Yo as desired.

We will now return to the original problem where r is defined on

~ an algebra of sets on a finite non-empty set X.

Theorem 3.10. r defined on ~ is realizable if and only if for all

A in ~ for all sequences AO""'~' BO""'~' Cl,···,CA, Dl, .•• ,DA

for all i such that 1 < i < k and for all j such that 1 $ j $ £

if A.'rB."C.'rD. and if A<k+l, then
~ ~ J J

(i) 1 A '7 A

(ii) if for all y in X

k A
B~(Y) + I B~(Y) + I C~(Y) ,

i~l i~l

then BO TAO if £ <k and

IAO'r BO
if A ~ k or A ~ k + 1 .
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We prove this theorem by interpreting the objects with which we are

dealing in such a way that theorem 3.8 will be applicable. We choose

some e such that e i X. Let S ~ X U (e). Let Z be the set of all

0, 1 valued functions on S. That is, the set of characteristic functions

of all the subs~ts of S. If we identify each element in ~(S) with its

corresponding function in Z, then Z becomes a subset of L ~ L(S).

~ can be interpreted as being a subset of Z. We identify ~ with a

subset of the set of all 0, 1 valued functions on X U (e) which have a

value of ° On e. Thus ~ becomes a subset of Z and ~ mimics a

subset of the power set of X. In theorem 3.8 we take X for A, S for

S, Z for Z and ~ for Y. Theorem 3.10 follows immediately.

In the same way that we proved theorem 3.9 we can prove the following

theorem. Recall that throughout this chapter we have been assuming that

~ is not empty and this is essential for the proof of 3.9.

Theorem 3.11. ~ defined on ~ is realizable if and only if for all A

in ~, for all AO""'~' BO""'~' Cl"",C£' Dl, ••• ,D£ in ~ for

all i such that 1 < i < k and for all j such that 1 S j S £ if

,C.r D.
J J

and if £ ~ k - I or £ ~ k + 1, then

(i) "1 A '( A

(ii) if for all y in X

k
I A~(Y) +
i~l

£

I
i~l
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then B
O

"'" AO if .e = k - 1 and

k + 1 ,

Before discussing the problem of finding necessary and sufficient

conditions for r to be realizable by a probability measure on ~, we

will briefly discuss the axioms in theorem 3,10, In particular, we will

show how 3,3, 3.5 and 3,6 follow from these axioms, This will be the

content of theorem 3,12 below, After proving this theorem, we will give

an explanation of the parameters in (ii) of theorem 3.10.

Theorem 3,12. Let the binary relation r be defined on ~, Assume that

for all A in ~ for all sequences AO""'~' BO,,··,Bk, Cl"",C.e'

Dl",.,D.e in ~ for all i such that 1 < i < k and for all j such

(i) ., A '7A

(ii) if for all y in X

then

k
I A~(Y) +

i=l

then if .e < k and

This assumption implies 3.3, 3,5 and 3.6.
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The proofs of 3.5 and 3.6 are easy. For 3.5 we have £ = a and

k > 1. Applying the conclusion of (ii) in theorem 3.12 where £ < k

yields BO 'r AO' For 3.6 £ = k + 1 and hence 1 AO "" BO' For 3.3 we

first prove that <;s,"" > is a semiorder. Assume that

A 'r B

C-rD

I A r D

Take B for AO' A for A
l

, C for A2 , A for Cl , C for BO'

B for B
l

, D for B
2

, and D for Dl • We have for all y in X

BC(y) + AC(y) + CC(y) + DC(y)

= CC(y) + BC(y) + DC(y) + AC(y)

Hence for all y in X

2
+ L A'?(y)

i=l l

1
+ L D'?(y)

i=l l

2

L
i=l

B'?(y) +
l

1

L
i=l

C,?(y) .
l

Therefore, by the hypothesis where £ < k we have B
O

;- A
O

or C r B

as desired.

For the next semiorder axiom assume that

A 'r" B

B 7C

lArD

Take C for B for A for D for BO'

B for B
l

, C for B2 , D for Dl . In this case for all y in X
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CC(y) + AC(y) + BC(y) + DC(y)

~ DC(y) + BC(y) + CC(y) + AC(y) .

Thus by hypothesis where £ < k we have B
O

r A
O

or D rC as desired.

We now must prove (ii) of definition 3.3. Let A,B,C be elements

of ~ such that A n C ~ B n C ~ 0. Notice that for all y in X

(A U C)c(y) AC(y) + CC(y)

(B U C)c(y) ~ BC(y) + CC(y)

Assume that A'7 Bo Take B U C for AO' A for AI' A U C for B
O

and B for B
l

. We have for all y in X

(B U C)c(y) + AC(y) ~ (A U C)c(y) + BC(y)

Applying the hypothesis where £

'7" B U C.

o < k ~ 1 we get B
O

'r A
O

or A U C

Conversely assume A U C .,.. B U C. 'rake B for AO' A U C for AI'

A for B
O

and B U C for Bl • The characteristic function assumption

holds in this case and since 0 ~ £ < k ~ 1 we have B
O

'7 A
O

or A.,.. B.

This completes the proof of theorem 3.12.

We will now discuss the parameters in axiom (ii) of theorem 3.10.

We will show that axioms (i) and (ii) yield exactly the same information

concerning the ordering as a realization of 'r yields. A realization of

;>- implies that '7 is irreflexive and this is reflected in axiom (i).

For (ii) consider first the analogous situation in the case of subjective

probability structures. The Kraft, Pratt and Seidenberg counterexample

shows that the existence of a realization of '7,> imposes restrictions on

the ordering which are not implied by the fundamental axioms. Consequently,
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a stronger axiom is needed which will impose at least the same restrictions

on the ordering as those which are imposed by the realization. This is

essentially the role played by axiom (iv) in Scott's theorem.

In the semiorder case let <::S, r> be a semiorder such that 'r is

realizable. Let us ask what conclusions can be drawn concerning the order-

ing 'r assuming that f is the function which realizes 'r. The most

obvious situation is the following where Al, ... ,An, Bl, ... ,Bn are in ::So

We have

A yB
n n

Thus

f(A ) > f(B ) + 1
n - . n

Assume further that there is an A
O

' B
O

in ::s such that for all y in X

(12)
n

I:
i=O

n

I:
i=O

Adding the above list of inequalities yields

(13)
n

I:
i=l

f(A.) >
~

n

I:
i=l

f( B.) + n •
~

Since f is additive (12) and (13) imply

(14 )
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This implies B
O

~ A
O

and this case corresponds to 3.5.

The occurrence of n in (14) suggests the following situation.

Suppose that we had a sequence of relationships of the form I Ci ~ Di

mixed in with our original list of relationships. For each relationship

of this form we would have to add an inequality of the form

f(D.) + 1 > f(C.)
1 1

to our sum (13). As long as there are no more than n - 1 of these

negative cases we will still get an equation like (14). To formulate

this case explicitly let Al""'~' Bl"'o,~, Cl',."C£' Dl,.",D£ be

in ;So Assume that k > 0, £ < k and

Assume further that we have an A
O

' B
O

in ;s such that for all y in X

k

L A~(y) +
i=O

£
L D~(y)

i=l 1

k

L
i=O

£

L
i=l

c~(y) .
1

Applying f to the new list of relationships and adding the resulting

inequalities we get
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k f,

(16) L f(A.) + L f(D.) + f,
~ ~i=l i=l

k f,

> L f(~) + L f( C.) + k •
i=l i=l ~

The inequality in (16) is a strict inequality because we can assume

that there is at least one negative relationship in the list. If this is

false, then we are back to the first case which we discussed. From (15)

and (16) we get

(17)

k > f, implies that k - f, > 0 and this implies that k - f, > 1. There-

fore, from (17) we have f(B
O

) ~ f(A
O

) + 1. This implies that B
O

rAO'

These two examples indicate how the first part of the conclusion in

axiom (ii) of theorem 3.10 arises. There are exactly two more cases where

sequences of inequalities like those which lead to (16) yield information

concerning the ordering. In particular, they arise when f, = k and

f, = k+ 1 in (17).

Assume that f, = k + 1. From (17) we get f(B
O

) + 1 > f(A
O
)' This

means lAO 'r B
O

' Now let f, = k. From (17) we get f(B
O

) > f(AO)'

Thus f(B
O

) + 1 > f(AO) or lAO r B
O

' These two cases correspond to

the last part of the conclusion in (ii) of theorem 3.10.

To see that sequences such as those which we have been considering

will not yield further information about the ordering assume that

f, = k + 2. From (17) we have
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Equation (18) clearly does not imply that B
O
~ A

O
' The only possibility

is for (18) to imply that I A
O
~ B

O
must hold. However (18) is consis­

tent with A
O
~ B

O
' Assume A

O
7 B

O
and hence

From (18) we have

which is not contradictory, Therefore (18) does not rule out the possi-

bility that A
O

T B
O

holds in the ordering.

Similar remakrs can be made when £ > k + 2. Therefore only those

conclusions which we have derived follow from sequences of inequalities

of the above form. Axiom (ii) in theorem 3.10 summarizes all of these

conclusions. This argument suggests that axioms (i) and (ii) yield just

as much information concerning the ordering of ~ as can be derived from

the actual realization, Intuitively, we see that axioms (i) and (ii) are

sufficient to guarantee that ~ is realizable.

We return now to the problem of a realization of 7 which is a

finitely additive probability measure, Notice that the definition of a

realization which we have been using must be modified. We do not want

the just noticeable difference interval to have a value of 1 because this

is the value which X will have under the probability measure, Assume

that we do not change the definition and that ixi > 1. If y is real­

izable by a probability measure, then it follows from the additivity

requirement that every atomic event in ~ is indifferent to the impos­

sible event ¢.
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Definition 3.13. Let >- be defined on :;So >- is realizable by a prob­

ability measure on :;s if and only if there is a real valued function P

defined on :;s such that

(i) < X,:;s,P > is a finItely additive probability space

(ii) there is an E such that 0 < E < 1 and for all A,B, in :;s

ArB .... P(A) ? P(B) + E .

Theorem 3.14. Let ;.- be defined on :;So ;.- is realizable by a probabil-

ity measure on :;s if and only if

(i) r is realizable by a function f such that f(¢) = 0 and

f(A) ? 0 for all A in :;s

(ii) X,..¢.

We will prove first that the condition is a necessary condition for

? to be realizable by a probability measure on :;So Let P be the prob­

ability measure on :;s which realizes ;'-. Since

1 = p(X) = p(x u ¢) = p(x) + p( ¢) ,

we know that p(¢) = O. P(A)? 0 for all A in :;s because < X,:;s,P >

is a finitely additive probability measure. Define g on :;s as follows

for all A in :;s

g(A) = P(A)/E

For all A,B in :;s ArB if and only if P(A)? P(B) + E if and only

if g(A)? g(B) + 1. Therefore, g satisfies axiom (i). For (ii)

1 = p(X) > E > 0 + E ? p(¢) + E

and hence X ~ ¢.
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To see that the conditions are sufficient let f satisfy (i). Define

P on ~ as follows for all A in ~

ptA) = f(A)/f(X)

From (i) and (ii) we know that f(X) > 0 and this justifies the definition

of P. Let A,B be in ~. We have ArB if and only if ptA) ~ P(B) +

l/f(X). Thus, l/f(X) satisfies the requirements of E in (ii) of defi­

nition 3.13. < X,~,P > is a finitely additive probability space because

ptA) > 0 for all A in ~.

Notice that if we drop the restrictions on the realizing function

which are given in theorem 3.14 (i), then the probability measure would not

f(A) = - 1/2

ptA) < O.

necessarily have non-negative values. That is, if

A in ~, then P defined above would be such that

for some

Hence,

< X,~,P > would not be a finitely additive probability space.

This answers the question concerning the relationship of semiordered

probability structures to finitely additive probability spaces at least in

one sense. We can still raise the question of finding conditions which are

sufficient but not necessary conditions for the reali.zability of r. This

problem will be discussed in the next chapter.
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CRAPrER IV

REALIZABLE SEMIORDERS

In this chapter we will discuss the problem of finding sufficient

conditions for r to be realizable by a probability measure on ~o As

usual, we will assume that X is a finite non-empty set, ~ ~ ~(X) and

that ~ is an algebra of sets on Xo In order to apply the theorems in

chapter III, we will also assume that ~ f ¢. The conditions which we

will discuss will impose restrictions on ~ in terms of the cardinalities

of the elements of ~. The conditions will be similar to those in chapter

I and II.

(4.1) For all A,B in ~ A'r B ..... IAI > IBI •

If < ~,~> satisfies 4.1, then r is realizable by a probability

measure on ~. Let <~, r> satisfy 4.1. We will prove that the condi-

tion in theorem 3.14 is satisfied. We will first prove that 7 is real­

izable by proving the condition in theorem 3.100 Axiom (i) is obviously

satisfied by <~, 'r >. Let AO' 00 •'1\' BO" 00, \:' Cl ,· 00, C.e' Dl ,· .. ,D.e

satisfy the hypothesis in axiom (ii). We have

11\1 > 1\:1 + 1

IDII + 1> Icll



Adding these inequalities yields

k f,
L: IA.I + L: ID·I

i=l 1 i=l 1

This implies

k
> L:

i=l

f,
IB.I + L:

1 i=l
Ic.l+k-f,.

1

(19) I(xll+···+ L:
XE~

I(xl I

>k-f,.

I(xl I)

The assumption on the characteristic functions of the elements of

the sequence is that for all x in X

k f, k f,
L: A~(x) + L: D~(x) L: B~(x) + L: C~(X)

i=O 1 i=l 1 i=O 1 i=l 1

This implies

(20) L: I(xll+ .. ·+ L: I (xl I + L: I(xll+ .. ·+ L: I (xli
XEA

O XE~ xEDl xEDf,

= L: I(xll+ .. ·+ L: I (xli + L: I(xll+ .. ·+ L: 1(xl I .
xEB

O
xEB

k
xEc

l XECf,

Combining (19) and (20) we get

L: I(xl I - L: I (xli > k - f, .
xEB

O
xEA

O

Therefore,

(21)



There are two cases to be considered. First, assume that £ < k.

This implies IBol > lAo' and by 4.1 we have B
O

'r A
O

' The second case

is for £ = k or £ = k + 1. If £ = k, then IBOI :: IAOI • This implies

not lAo' > IBol and hence lAO 'r BO' If £ = k + 1 then £ >0 and

(22) can be written as a strict inequality. The result is that

IBol + 1> IAol. Therefore, not IAol > IBol and lAO T BO'

So far it has been shown that 'r is realizable. Let f be the

function which realizes T. Notice that for all A in ~ if A # ¢,

then f(~):: f(¢) + 1. Define g on ~ as follows for all A in ~

g(A) f(A) - f(¢)

We have g(¢) = O. Furthermore, for all A in ~ if A # ¢, then

g(A) :: 0 because f(A) > f(¢). This completes the proof of axiom (i) in

theorem 3.14. Axiom (ii) follows immediately from 4.1. Therefore, r

is realizable by a probability measure on ~ if <~, 'r > satisfies 4.1.

From the assumption that ~ = ~(X), it follows that 4.1 is equivalent

to 2.7, 2.8, 2.9, 2.13, 2.14, 2.15 and 2.16. If we do not make this

stronger assumption, then three of these conditions are not equivalent to

4.1 but only imply 4.1. These three conditions are 2.9, 2.15 and 2.16.

Therefore, each of the conditions in the list is a sufficient condition

for 'r to be realizable by a probability measure on ~' In chapter II

it was argued that condition 4.1 is unacceptable for at least two reasons.

The strongest objection to the condition is that it implies that is

transitive. It follows that every condition in the above list is

unacceptable.

In chapter II we were able to give a condition which is a sufficient

condition for the representability of 'r such that the condition does not
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imply that is transitive. This is condition 2.10. We can ask whether

or not a similar result can be given in the case of the realizability of

r. Specifically, can we find a set of simple axioms which impose restric­

tions on r in terms of the cardinalities of the elements of ~ such

that the axioms have two characteristics? The axioms imply that 'r is

realizable by a probability measure and they do not imply that is

transitive.

A simple example can be given to show that the realizability of r

does not imply that is transitive. Let ~ = (91, (a), (b), (a, b)}.

Define ~ through the following exhaustive list of relationships.

(b) 'r 91, (a,b) 'r 91 and (a,b) 'r (a). A realization of r can be defined

as follows. f(¢) = 0, f((a}) = 1/2, f((b}) = 1 and f((a,b)) = 3/2.

f satisfies the condition in 3.14 and therefore ~ is realizable by a

probability measure •. For completeness, as in the proof of theorem 3.14,

we define for all A in ~ PiA) = f(A)/f(X) = 2/3 f(A). P is a proba­

bility measure which realizes 'r and E in definition 3.13 has a value

of 2/3. However,

(a, b)

is not transitive because

(b), (b) - (a) and (a, b) 'r (a)

Therefore, the requirements which must be satisfied by the conditions

for which we are looking are not contradictory. We will begin with a

fairly simple set of axioms.

(4.2) < ~, 'r > is a semiorder such that

( i) X'7 91·
( ii) ·For all A in ~ ., 91 'r A.

( iii) There is at least one atom D of ~ such that D 7- 91.
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4.2 is not a sufficient condition for 7" to be realizable by a probabil­

ity measure on ~ because 4.2 is not a sufficient condition for the

realizability of r. A counterexample will be constructed where

X; (p,q,r,s,t) and ~ ;iP(X)o We define r on ~ to consist of

exactly 34 relationships. For all A in ~ such that A I ¢ take

A 7 ¢. To these 31 relationships add the following three relationships

(p) .,... (q,s)

(p,q,s) 7" (r,t)

(p,q,s} T (q,s)

< ~, .,... > in this counterexample is very similar to <~, 'r> in the

counterexample which was given in chapter III to show that 3.5 is not a

sufficient condition for the realizability of ~. Therefore, we can use

the results which were proven in the earlier counterexample to simplify

the proof that <~, r>, as defined here, is a semiorder. We only need

to verify axioms (ii) and (iii) in definition 2.20 In (ii) there are

two possible cases where the antecedent is true.

Case 1. ¢ does not appear in the antecedent. In the counterexample

to the sufficiency of 3.5 it was proved that the axiom is valid in this

case.

Case 2. ¢ appears in the antecedent. The only possible instances

of the axiom in this case are the following where A,B and C are all

different from ¢.

A'r¢& ByC --e,A 7C vB'r¢

A'TB& C 'r¢--e,A'r¢vC'7B

A'r"¢&Br-¢--e,A'r¢vB'r¢
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Since a 7 ¢ for all A ~ ¢, each of these three instances of the axiom

must hold.

Therefore <~, ~ > satisfies axiom (ii). For axiom (iii) the only

instances for which the antecedent is true arise when A ~ ¢, B ~ ¢,

A >- Band B 'r ¢. The conclusion in these cases is A'r D v D 'r ¢ for

all D in ~. If D ~ ¢, then D 'r ¢ holds and if D = ¢, then

A 'r D holds. Therefore axiom (iii) is satisfied by <~, r >.

<~, ~> obviously satisfies axioms (ii) and (iii) in 4.2. It has

already been proved in the counterexample in chapter III that if an order­

ing .,. satisfies (6), then ..,. is not realizable. The ordering 'r which

we have defined satisfies (6) and therefore is not realizable.

This counterexample also proves that the following condition, which

is slightly stronger than 4.2, is not a sufficient condition for the

realizability of r.

(4.3) <~, >-> is a semiorder such that for all A,B in ~

(i) if A and B are atoms of ~, then A - B

(ii) if A ~ ¢, then A'" ¢.

It is quite clear why 4.2 and 4.3 are not sufficient conditions for

the realizability of r. They do not impose any restrictions on the

ordering in terms of the composition of the elements in ~. We can

strengthen 4.3 as follows.

(4.4) <~, 'r> is an additive semiorder such that for all A,B in ~

(i) if A and B are atoms of ~, then ,A - B

(ii) if A ~ ¢, then A r ¢.
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We will prove by counterexample that 4.4 is not a sufficient condi­

tion for the realizability of 'r. Let X = (p,q,r,s,t,u,v,w) and let

~ = ~(X) . We define a real valued function f on the atoms of ~ which

has the following values.

f( (p) ) LOO

f((q}) = L39

f((r)) L20

f( ( s) ) = L80

f((t}) = L20

f((u} ) L59

f((v)) = L82

f( (w) ) = L79

f is extended to every member of ~ additively. We define 'r on ~

according to the rule that for all A,B in ~

A 'rB <-> f(A) :: f(B) + 1

By lemma 3.4 we know that < ~,» is an additive semiorder. Axioms (i)

and (ii) in 4.4 are also satisfied by <~, 'r >.

Consider the following numerical assignments.

f((s,t,u} ) = 4.59:: f((p,q,r}) + 1 3.59 + 1

f((q,v,w} ) = 5.00> f((p,r,s}) + 1 4.00 + 1

f((q,s)) 3.19 < f((p,r}) + 1 = 2.20 + 1

From these inequalities it follows that

(s,t,u) 'r (p,q,r)

(22) (q,v,w) 'r (p,r,s)

.., (q,s) r (p, r) .
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We also have

f((t,u,v,w}) = 6.40 ~ f((p,q,r,s}) + 1 = 5.39 + 1

and therefore

(t,u,v,w) 7 (p,q,r,s)

We will define a new ordering r' on ~ by making exactly one change

in ';-. We take

(t,u,v,w) -' (p,q,r,s) .

We must prove that < ~,~'> satisfies 4.4. It is clear that axioms

(i) and (ii) are satisfied by < ~,r'> because they are satisfied by

< ~,'>'->' Since the two elements whose relationship was altered are dis­

joint and since their union equals X axiom (ii) of the definition of an

additive semiorder is satisfied by < ~,~'>. It remains to be proved that

< ~,>-' > is a semiorder. Unfortunately, X in this coUnterexample does not

satisfy the restrictions placed on Ixi by Axiom Checker. Hence, the pro­

gram cannot be uSed to verify that < ~,'r'> is a semiorder.

To prove that < ~,'r'> is a semiorder, first notice that the ordering

is irreflexive. For axioms (ii) and (iii) of definition 2.2 consider the

values assigned to every A in ~. There is no A in ~ such that

and there is no A in ~ such that

6.39 S f(A) < 6.40 .

To verify this, a computer program was written,which computes and lists

values which are additively assigned to an algebra of sets from an assign­

ment to the atoms. The program will be briefly described after the counter­

example has been described.
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We can represent this situation with a diagram. 1[1 and 1]1 will

represent boundaries of intervals which include the endpoint. 1(1 and 1)1

will represent boundaries of intervals which do not include the endpoint.

Hatched intervals will represent intervals such that there is no A in ~

such that f(A) is in the interval.

5.39 5.40

-------1~ff~-
I I

{p,q,r,s}

. , .
6.39 6.40

I I
--1~fff$74

I I
(t,u,v,")

Consider the second semiorder axiom. Ho" can it fail in < ~,r'>?

Since it holds in <~, 'r>, it can only fail as a result of the change

which was made in the ordering when < ~,r'> was defined. That is, does

changing

(t,u,v,w) '7" {p,q,r,s}

to 1 (t,u,v,") 'r (p,q,r,s)

result in a false instance of the axiom? If the answer to this question is

no, then < ~,~I> must satisfy the second semiorder axiom.

There are two cases where the second semiorder axiom possibly relies

on (t,u,v,w) r (p,q,r,s) for its validity. First, we have for some A,B

in ;s

{t,u,v,w} 'r A

B 'r (p,q,r,s)

,BrA.

In this case in < ~,r'> we have

(t,u,v,w) 7-' A

Br' (p,q,r,s)
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I B r' A

I (t,u,v,w) ;-' (p,q,r,s)

This would be a false instance of the axiom in < ~,r'>. However, the

three assumptions concerning ~ are contradictory. From the diagram

abbve ;te get

and

f(A) ::: 5.39

fiB) ? 6.40

Therefore, B >- A which contradicts the assumption that I B 'r- A holds.

The second case arises when we have an A,B in ~ such that

A'r(p,q,r,s}

(t,u,v,w} ..,. B

I A 7" B

In this case we have

A 70' (p,q,r,s}

(t,u,v,w} .,.., B

I A"'" B

., (t,u,v,w} ,..' (p,q,r,s)

This would be a false instance of the axiom in < ~,;-'>. However, the

three assumptions concerning 'r- are contradictory. From the diagram

above we get

and

f(A) ? 6.40

f(B) ::: 5.39

This implies that A 'r B which contradicts the assumption that ., A 'r B

holds.

This proves that the second semiorder axiom must hold in < ~,r'>.

Now consider the third semiorder axiom. We again ask whether or not this
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axiom will fail as a result of the change which was made in r when r'

was defined? There are two cases where the third axiom possibly relies

on (t,u,v,w) r (p,q,r,s) for its validity. First, we have for some

B,C in ~

(t,u,v,w) r B

B r C

-, (p,q,r,s) r C

In this case in < ~,7'> we have

(t,u,v,w) '7' B

B 'r' C

., (t,u,v,w) r-' (p,q,r,s)

"1 (p,q,r,s) y' C •

This would be a false instance of the axiom in < ~,7'>. However, the

three assumptions concerning 'r are contradictory. From the diagram

above and the definition of r we have

f(B) < 5.39

and f(B) ? f(C) + 1 .

Therefore, since f((p,q,r,s)); 5.39, (p,q,r,s) r C which contradicts

the assumption that -, (p,q,r,s) 'r C holds.

The second case arises when we have an A,B in ~ such that

ArB

B 'r (p,q,r,s)

I A y(t,u,v,w)

In < ~,T'> we have

Ar' B

By' (p,q,r,s)
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., A 7' (t,u,v,w)

I (t,u,v,w) 7' (p,q,r,s)

This would be a false instance of the axiom in < ~,~'>, Again the three

assumptions concerning r are contradictory, We have

f(A) ~ f(B) + 1

and f(B) ~ 6,40

Therefore, f(A) ~ f((t,u,v,w}) + 1 and A 7 (t,u,v,w) which contradicts

the assumptions,

This completes the proof that < ~,T'> satisfies 4,4, ~I is not

realizable, Assume that g is a function which realizes 7', From (22)

we have

g(( s, t ,uJ) > g(( p, q, r}) + 1

g((q,v,w}) ~ g((p,r,s}) + 1

g((p,r}) + 1 > g((q,sJ) .

Adding these inequalities and applying the additivity of g yields

g((t,u,v,w}) > g((p,q,r,s}) + 1 ,

Since g

(p, q, r, s)

preserves the order of ~', we conclude that

and this result is a contradiction,

(t,u,v,w) r'

To complete the counterexample a description of the computer program

mentioned above must be given, We will call this program Assign, The

main arrays in Assign are IB, IS, IU and IAT, The arrays in Assign are

very much like the arrays in Axiom Checker, The main differences are that

an array like R is not used and the other arrays have more elements,

The upper limit of Ixl is 10 in Assign, IB represents P(X) in

Assign in the same way that BA represents P(X) in Axiom Checker, IB

has 1,024 elements, IS has 1,024 elements and they contain the values
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assigned to the elements of ~. IAT has 10 elements which contain the

values assigned to the atoms of ~. IU is the atom pointer array in

Assign. It has 10 elements. The first seven elements of IU have exactly

the same values as the seven elements in AP of Axiom Checker. The last

three elements of IU have the values 129, 257 and 513, respectively.

The program first reads in the cardinality of X. An upper limit is

defined so that a minimal portion of each of the main arrays will be used.

The values to be assigned to the atoms of ~ are then read into lAT.

Using the AND function and the procedure used in Axiom Checker, the val­

ues of the elements of ~ are computed and placed in Array IS. The val­

ues are then printed out.

The program Assign was run for f and X as described in the

counterexample above. The list of values which were printed out verified

that the intervals (5.39, 5.40] and [6.39, 6.40) do not contain f(A) for

all A in ~. This completes the proof that 4.4 is not a sufficient con­

dition for the realizability of ~.

This result is somewhat surprising. 4.4 is similar to 1.13 except

that 4.4 does not have an axiom which asserts the transitivity of Y.

However, the transitivity of ~ can be derived from the semiorder axioms.

If A)- Band B 'I- C then either A '7 C or B T B. Since B 'r B is

false, we conclude that A YC. 1.13 is sufficient for the realizability

of ~. What differences are there between these two conditions which

explain the fact that 4.4 is not a sufficient condition for the realiza­

bility of )-?

Consider the proof which was given to show that 1.13 is a sufficient

condition for the realizability of Yr. We can begin a similar proof in
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the case of 4,4, Everything is the same up to the case where we are con­

sidering an A,B in ~ such that IAI = IBI = 2, Case 1, given in the

proof that 1,13 is a sufficient condition for the realizability of ~,

can be reconstructed in the new proof, The argument in case 2 breaks down

in the semiorder case, The problem is that is not transitive in the

semiorder case, In particular, in the counterexample given above we have

f((p,r}) = 2,20 and f((s,u}) = 3,39, Therefore, (s,u)~' (p,r) and

this relationship violates case 2 of the earlier proof.

Condition 4,4 is also similar to condition 2,10 which has been proved

to be a sufficient condition for the representability of ~. 2,10 doe'S

not imply that is transitive, These remarks suggest that when is

not transitive, the representability of 7 follows from fairly natural

conditions but the realizability of 7 requires very strong conditions,

(4.5) <~, Y> is an additive semiorder such that for all A,B in ~

(i) if A and B are atoms of ~, then A - B

(il) if IAI>IBI, then ArB,

4.5 is a stronger version of 4,4 but 4,5 still is not a sufficient

condition for the realizability of r. A counterexample can be constructed

from f, as defined in the proof that 4,4 is not a sufficient condition

for the realizability of 7. Let X, ~ and f be as in that counter­

example. Define the function g on ~ as follows for all A in ~

g(A) = f(A) -I- 5

In this case we have a diagram similar to the one given earlier, except

that the values have been increased,
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25.39 25.40
I I

~~f--
I

(p,q,r, s)

. . .
26.39 26.40

I I

~
I I

(t,u,v,w)

We define < ~,r> and < ~,y'> exactly as before and we see that

< ~,)-I > is an additive semiorder which satisfies 4.5 (i). To see that

4.5 ( ii) holds notice that for all A in ~

if IAI 1 , then 6 :s g(A) :S7

if IAI ~ 2 , then 12 :s alA) :s 14

if IAI 3 , then 18 :s g(A) < 21

if IAI ~ 4 then 24 :s g(A) :s 28

if IAI 5 then 31 :s g(A) :s 34

if IAI 6 , then 38 :s g(A) :s 40

if IAI ~ 7 , then 44 :s g(A) :s 46

Since g(X) ~ 51.79, 4.5 (ii) is satisfied by <~,'r>. This implies

that < ~,'rl> satisfies 4.5 (ii). However, y' is not realizable because

the relationships in (22) hold in < ~,'r'>. Therefore, 4.5 is not a suffi-

cient condition for the realizability of '1"".

(4.6) <~, ';-> is an additive semiorder such that for all A,B in ~

(i) if A and B are atoms of ~, then A - B

(ii) A ';>- ¢

(iii) A '7 B --. IAI > IBI .

4.6 is not a sufficient condition for the realizability of ';-. We

construct a counterexample from X ~ (p,q,r,s,t,u,v,w,x) and ~ ~d"(X).
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As usual, we begin with a functiqn f defined on the atoms of ~.

f(( p} ) = 1.45

f(( q} ) = 1.02

f((r} ) 1.19

f((s)) 1.16

f((t)) 1.16

f((u} ) = 1.15

f((v} ) = 1.14

f( (w}) 1.19

f( (x) ) = 1.19

We extend f additively to all elements of ~ and define ~ on ~ by

the rule that for all A,B in ~

A ~ B H f(A) ? fiB) + 1 .

Lemma 3.4 implies that <~, '7 > is an additive semiorder. (i) and

(ii) of 4.6 are obviously satisfied by <~, 'r>. The program Assign was

run on this assignment to the atoms of ~. From the output the following

table was constructed. For all A in ~

if [AI = 1 , then 1.02 S f(A) S 1.45

if IAI = 2 , then 2.16 S f(A) S 2.64

if IAI = 3 , then 3.31 S f(A) S 3.83

if IAI = 4 , then 4.47 S f(A) S 5.02

if IA[ = 5 , then 5.63 S f(A) S 6.18

if [AI = 6 , then 6.82 S f(A) S 7.34

if IA[ = 7 , then 8.01 S f(A) S 8.49

if [AI = 8 , then 9.20 S f(A) S 9.63

To complete the table fix) = 10.65.
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Assume that A T B for some A,B in ~. The table above shows that

IAI f. IBI • Assume IBI > IAI· Let IBI = m and IAI = n. Let A
l

be

an element such that IAll = n and f(A
l

) is the maximum value for those

elements in ~ with cardinalities of n. Let Bl be an element such

that IBll = m and f(Bl ) is the minimum value for those elements with

cardinalities of m. From the table above, since m > n, f(B
l

) > f(A
l
).

We have f(B) ~ f(Bl ) > f(Al ) ~ f(A). Since ArB, f(A) ~ f(B) + 1

and therefore f(B) > f(B) + 1. This is a contradiction. Therefore, if

A .,. B, then IAI > IBI. This proves that <~, 'r > satisfies 4.6.

We have the following numerical assignments.

f((s,t,u,x}) = 4.66 ~ f((p,q,r}) + 1 3.66 + 1

f((q,v,w}) 3.35 ~ f((r,s}) + 1 = 2.35 + 1

f((q,s}) = 2.18 < r((r}) + 1 = 1.19 + 1

From these inequalities it follows that

(s,t,u,x) 'r (p,q,r)

(q,v,w) '7 (r,s)

l (q,s) 7" (r) .

We also have

f((t,u,v,w,x})

Therefore,

5.83 ~ r((p,q,r,s}) + 1 = 4.83 + 1 .

(t,u,v,w,x} '>- (p,q,r,s} •

From the output of Assign it was verified that there is no A in ~

such that

4.82 < f(A) S 4.83

and there is no A in ~ such that

5.82 S f(A) < 5.83 .
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We can represent this in the following diagram.

4.82

1

(p,q, r, s)

4.83

----1~---
I

• • •

5.82 5.83
I I

-wY~
I I

(t,u,v,w,x)

We define 'r' on :::5 by making exactly one change in 7-. We take

(t,u,v,w,x) -' (p,q,r,s) •

An argument similar to the one given in the counterexample which follows

4.4 can be given to show that < :::5,r'> as defined above is an additive

semiorder. Axioms (i), (ii) and (iii) of 4.6 are obviously satisfied by

<:::5,;" >.

Therefore, < :::5,"" > satisfies 4,6, 'r' is not realizable. If it

is realizable, then there is a function g such that g preserves the

relationships in (23). Hence,

g((s,t,u,x}) 2 g(p,q,r}) + 1

g((q,v,w}) 2 g((r,s}) + 1

g((r}) + 1 > g((q,s})

Adding these inequalities and applying the additivity of g yields

g((t,u,v,w,x}) > g((p,q,r,s}) + 1 ,

This implies the contradictory result that

(t,u,v,w,x) 7' (p,q,r,s)

Therefore, 4,6 is not a sufficient condition for the realizability of .,..

Conditions 4.5 and 4.6 are extremely strong conditions. It is rather

surprising to find that they are not sufficient conditions for the real-

izability of 7, Conditions similar to these with the relation ~
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replacing - can also be given. Since ~ is transitive it seems that

these conditions might be sufficient for the realizability of ~. We

will prove that in fact this is not the case.

(4.7) < 'S, r> is an additive semiorder such that for all A,B in ~

(i) if A and B are atoms of'S, then A'~ B

(ii) if IAI > IBI, then A~ B.

The counterexample given to show that 4.5 is not a sufficient con­

dition for the realizability of ~ also shows that 4.7 is not a suffi­

cient condition for the realizability of r. We only need to verify that

< 'S,r' > in that counterexample satisfies 4.7 (i). Let A,B be atoms of

'S where X, 'S, f, 'r and 7' are defined as they are in the counterexample

which was given to show that 4.5 is not a sufficient condition for the

realizability of ~.

For all D in ~ we have A 'r D if and only if D = ¢ if and only

if B 'r D. Furthermore, D '7 A if and only if IDI ~ 2 if and only if

D'rB. Therefore, A~B for all atoms of ~. <'Sir'> satisfies 4.7

and r' is not realizable which complete s the proof that 4.7 is not a

sufficient condition for the realizability of ~.

(4.8) < ~, 'r > is an additive semiorder such that for all A,B in 'S

( i) if A and B are atoms of 'S, then A~ B

( ii) A'r¢

(iii) if A ~ B, then IAI > IBI·

4.8 is not a sufficient condition for the realizability of r. To

construct a counterexample in this case we use the counterexample which
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was given to prove that 4.6 is not·a sufficient condition for the real­

izability of ~. We use it in the same way that we used the counter­

example which follows 4.4 in proving that 4.5 is not a sufficient condition

for the realizability of 7-. Let X, ~ and f be as in the counterexample

which follows 4.6. For all A in ~ define g as follows.

g(A) ~ f(A) + 1 .

The table given in the earlier counterexample must be modified. We

now have for all A in ~

if IAI 1 , then 2.02 ~ g(A) ~ 2.45

if IAI 2 then 4.16 ~ g(A) ~ 4.64

if IAI ~ 3 , then 6.31 ~ g(A) ~ 6.83

if IAI ~ 4 then 8.47 ~ g(A) ~ 9.02

if IAI 5 then 10.63 ~ g(A) < 11.18

if IAI 6 then 12.82 ~ g(A) ~ 13.34

if IAI ~ 7 , then 15.01 ~ g(A) ~ 15.49

if IAI ~ 8 then 17.20 ~ g(A) ~ 17.63

Furthermore g(X) 19.65. Axiom (ii) clearly holds in <~, 7>. For

(iii) let A .,.. B. From the above table IAI I IBI· As in the earlier

counterexample, we can prove that IAI < IBI is contradictory. There-

fore, IAI > IBI and we see that axiom (iii) must hold.

For axiom ( i) let A and B be atoms of 5:5. and let D be any

element in ~. A 'T D if and only if D ~ ¢ if and only if B '7 D.

D rA if and only if IDI >2 if and only if D 'r B.

We define < ~;... '> exactly as we did before. Since '7' preserves

the relationships in (23) we know that r' is not realizable. Therefore,

4.8 is not a sufficient condition for the realizability of 7- because

< ~;,., > as defined above satisfies 4.8 but.,.' is not realizable.
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It is interesting to notice how close 'r' in the above counter­

example comes to being realizable. From the above table < ~,~> satisfies

the axiom that for all A,B in ::l A 'r B H IAI >1 BI. This axiom is known

to be a sufficient condition for the realizability of ~. When we define

'r f we take

(t,u,v,w,x) -' (p,q,r,s)

This means that the axiom has exactly one false instance in < ~,~'>.

Conditions 4.4, 4.5, 4.6, 4.7 and 4.8 show that we can place

extremely strong conditions on an ordering >- without forcing r to be ,.

realizable. Each counterexample exploits the fact that is not transi-

¢,
(24)

tive. In each case we start with a relationship of the form A ?-B. A

new ordering is defined in which we take \ A-B. A and B are chosen

so that when this is done no other relationships need to be changed. That

is, we have A n B = ¢ and A U B = X. In the definition of an additive

semiorder we have the axiom that for all A,B,C in ~ if A n C = B n C =

then

A'rBf->AUC ~BUC.

Due to our choice of A and B, (24) does not force us to make any

other changes in the ordering. Notice that in each of the counterexamples

we have given, we have a C in ~ such that C - Band C n A I ¢. If

is transitive, then when we take A - B we are also forced to take

A-C. For the new ordering to satisfy (24) we must now make several

changes in the old ordering. We would definitely not be able to preserve

the relationships which lead to the contradictions.

Therefore, it is precisely the fact that is not transitive that

leads to the counterexamples. The counterexample which follows 4.8 points
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this out very clearly. The ordering r' fails to be realizable because

it lacks exactly one relationship of the form A ~B. This one relation­

ship can be omitted and < ~,~'> will still satisfy (23) just because ­

is not transitive.

In one sense this gives an indication of the limitations which are

imposed on, orderings when the indifference relation can be non-transitive.

In particular let us interpret A ~ B to mean that . A is definitely more

probable than B. Suppose that we begin constructing the theory of prob­

ability from this concept. We do not want our indifference relation nec­

essarily to be transitive so we assume that < ~,~> is an additive

semiorder where ~ is the set of events. Since we would like to be able

to construct finitely additive probability spaces on ~, we naturally

want to find conditions which will guarantee that ~ is realizable. That

is, we want to find axioms such that if an additive semiorder satisfies

these axioms, we will know that r is realizable by a probability measure

on ~.

Hopefully, the axioms will not be too complex. The second axiom in

theorem 3.10 is an extremely strong axiom. The notion of a characteristic

function cannot be formulated in first-order logic. Another problem is

that it has infinitely many instances even when ~ is finite. This fol­

lows because it allows any relationship of the form A ~ B or I C ~ D

to be repeated any number of times.

The conditions discussed in chapter 2 are less complicated in the

sense that they are finitary. However, those which imply that Y is

realizable also imply that - is transitive. Therefore, they are unac­

ceptable. 4.4, 4.5, 4.6, 4.7 and 4.8 all have the virtue of not implying
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that - is transitive. However, they do not imply that ~ is realizable.

Even these four conditions are stronger conditions than we would generally

be willing to impose on r.

The remarks concerning the finite axiomatizability of the theory of

realizable subjective probability structures will apply to the theory of

realizable semiorders. <:::5, >- > is a realizable semiorder if <:::5, >- > is

a semiorder and >- is realizable. Let T be the class of all realizable

semiorders. Since we have assumed that :::5 is an algebra of sets on X,

T is not axiomatizable by a set of universal sentences, finite or infinite.

As in chapter I the proof of this result is unsatisfactory in the sense

that it follows from the closure assumptions on :::5. The question whether

or not T is finitely axiomatizable is an open problem.
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APPENDIX

The actual program instructions for the two programs described in

the paper are given below, The programs were written in Fortran IV for

a 32 K 7090 which has the AND and OR functions available in the

assembler, Control cards are described in the comments at the beginning

of each program,

C AXIOM CHECKER

C NN THE NUMBER OF ATOMS

C ISS SUBJECTIVE PROBABILITY OR

C SEMIORDER SWITCH

C CONTROL CARDS

2

3

4

1

IN THE RELATIONS ARRAY, COL 1-3

THE CHANGES IN R

COL 1-3 ROW I FOR A(I)

COL 4-6 ROW J FOR A(J)

COL 7,8 -1,0,1 OR - 2,0,2

FOR A( I) LT, EQ, GT A(J)

93

NUMBER OF ATOMS IN COL 1

ATOMIC VALUES 7F6.2 STARTING

IN COL 1

COL 1 ~ ° FOR S,P,S

COL 1 1 FOR SEMIORDERS

N ~ NUMBER OF CHANGES TO MAKE

C

C

C

C

C

C

C

C 5-N

C

C

C

C



C N + 1 END OF GROUP

C COL 1 = 8 IF MORE GROUPS

C FOLLOW

C COL 1 = 9 IF LAST GROUP

DIMENSION IA(128),ru(7),IR(128,128),AV(7)

INTEGER FV(128),AV2(7)

COMMON IA,IU,IR,AV,FV,AV2

EQUIVALENCE (X,IX),(Y,IY),(W,IW),(Z,IZ)

LOGICAL HOP

DO 1 I=1,128

IA(I)=I-l

1 FV(I)=O.O

IU(1)=2

IU(2)=3

ru(3)=5

ru(4)=9

IU(5)=17

IU(6)=33

ru(7)=65

100 ISTR=ISTR+l

WRITE(6,919) ISTR

919 FORMAT(lHl,16HSTRUCTUHE NUMBER,I5)

C WIPE OUT RELATIONS

DO 2 I=1,128

DO 2 J=1,128

2 IR(I,J)=-3
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DO 3 1=1,128

3 FV(I)=O

C READ IN NO OF ATOMS AND ATOMIC VALUES

READ(5,900) NN

IF(NN.GT.7) GO TO 1001

READ(5,901) (AV(J),J=l,NN)

900 FORMAT(n)

901 FORMAT(7F6.2)

MM=2**NN

DO 9 I=l,NN

9 AV2(I)=100.0*AV(I)+5

C COMPUTE VALUES OF THE ALGEBRA

DO 10 I=l,MM

DO 10 J=l,NN

KK=IU(J)

Z=AND(IA(I),IA(KK))

IF(IZ.GT.O) FV(I)=FV(I)+AV2(J)

10 CONTINUE

WRITE(6,902) (FV(I),I=l,MM)

902 FORMAT(lHO,10I7)

C SET· UP RELATIONS

C -1,0,1 FOR S.P.S LEQ,EQUIV,GEQ

C - 2,0:,'2 FOR SEMIORDERS LSS, IND, GTR

READ( 5,903) ISS

903 FORMAT(n)

IF(ISS) 1000,20,30
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20 DO 28 I=l,MM

DO 28 J=l,MM

IF(FV(I)-FV(J)) 23,22,21

22 IR(I,J)=O

IR(J,I)=O

GO TO 28

21 IR(I,J)=l

IR(J,I)=-l
-------------------------------------------------------------

GO TO 28

23 IR( I,J)=-l

IR(J,I)=l

28 CONTINUE

GO TO 50

30 DO 38 I=l,MM

DO 38 J=l,MM

IF(FV(I)-(FV(J)+l)) 32,31,31

32 IF(FV(J)-(FV(I)+l)) 35,33,33

35 IR(I,J)=O

IR(J,I)=O

GO TO 38

31 IR(I,J)=2

IR(J,I)=-2

GO TO 38

33 IR(I,J)=-2

IR(J,I)=2

38 CONTINUE
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C READ IN SPECIAL RELATIONS

50 READ( 5,910) IRR

910 FORMAT(I3)

IF(IRR.LE.O) GO TO 61

DO 60 I=l,IRR

READ(5,911) IROW,ICOL,IREL

911 FORMAT(2I3,I2)

IF(IRELoEQ.O) GO TO 55

IF(IREL.EQ.-3) GO TO 56

IR(IROW,ICOL)=IREL

IR(ICOL,IROW)=-IREL

GO TO 60

55 IR(IROW,ICOL)=O

IR( ICOL, IROW)=0

GO TO 60

56 IR(IROW,ICOL)-3

IR(ICOL,IROW)=-3

60 CONTINUE

C DROP OUT WHEN ALGEBRA IS READY FOR TESTING

61 DO 51 I=l,MM

WRITE(6,912) I,(IR(I,J),J=l,MM)

912 FORMAT(IHO,I3,5X,50I2)

51 CONTINUE

IF(ISS) 1000,200,300

C S.P.S. TEST

C CONNECTIVITY
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200 HOP=.FALSE.

DO 210 I=l,MM

DO 210. J=l,MM

IF(IR(I,J).GT.-3) GO TO 210

WRITE(6,920) I,J

920 FORMAT (19H$FAILS CONNEC'rIVITY,215)

HOP=.TRUE.

210 CONTINUE

IF(HOP) GO TO 215

WRITE(6,921)

921 FORMAT(20H$PASSES CONNECTIVITY)

C TMNSITIVITY

215 HOP=.FALSE.

DO 220 I=l,MM

DO 220 J=l,MM

DO 220 K=l,MM

IF(IR(I,J).LT.O.OR.IR(J,K).LT.O) GO TO 220

IF(IR(I,K).GE.O) GO TO 220

WRITE(6,930) I,J,K

930 FORMAT(19H$FAILS TMNSITIVITY,3I5)

HOP=.TRUE.

220 CONTINUE

IF(HOP) GO TO 225

WRITE(6,931)

931 FORMAT(20H$PASSES TMNSITIVITY)

CAGTOREQO
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225 HOP=.FALSE.

DO 230 I=l,MM

IF(IR(l,I).LE.O) GO TO 230

WRITE(6,940)

940 FORMAT(24H$FAILS NORMAL 0 RELATION, 15)

HOP=.TRUE.

230 CONTINUE

IF(HOP) GO TO 235

WRITE (6,941)

941 FORMAT(25H$PASSES NORMAL 0 RELATION)

C TEST O,X RELATION

235 IF(IR(l,MM).LT.O) GO TO 240

WRITE(6,950)

950 FORMAT(15H$FAILS x 0 TEST)

GO TO 245

240 WRITE(6,951)

951 FORMAT(16H$PASSES X 0 TEST)

C TEST ADDITIVITY

245 HOP=.FALSE.

DO 270 I=l,MM

DO 270 J=l,MM

DO 270 K=l,MM

X=AND(IA(I),IA(K))

IF(IX.GT.O) GO TO 270

Y=AND(IA(J),IA(K))

IF(IYoGT.O) GO TO 270
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Z=OR(IA(I),IA(K))

W=OR(IA(J),IA(K))

DO 260 L=l,MM

IF(IZ.EQ.IA(L)) L1=L

IF(IW.EQ.IA(L)) L2=L

260 CONTINUE

IF((IR(I,J).GE.0).AND.(IR(L1,L2).LT.0)) GO TO 265

IF((IR(I,J).LT.0).AND.(IR(L1,L2).GE.0)) GO TO 265

GO TO 270

265 WRITE(6,920) I,J,L1,L2

960 FORMAT(17H$FAILS ADDITIVITY,2I5,5X,2I5)

HOP=.TRUE.

270 CONTINUE

IF(HOP) GO TO 290

WRITE(6,921)

961 FORMAT(18H$PASSES ADDITIVITY)

290 WRITE(6,962)

962 FORMAT(lH$,44HEND OF SUBJECTIVE PROBABILITY STRUCTURE TEST)

GO TO 1050

C SEMIORDER TEST

C IRREFLEXITIVITY

300 HOP=.FALSE.

DO 310 I=l,MM

IF(IR(I,I).NE.O) GO TO 309

GO TO 310

309 WRITE(6,980) I
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980 FORMAT(22H$FAILS IRREFLEXITIVITY,I5)

HOP=.TRUE.

310 CONTINUE

IF(HOP) GO TO 320

WRITE(6,981)

981 FORMAT (23H$PASSES IRREFLEXITIVITY)

C TEST 2 ND AXIOM

320 HOP=.FALSE.

DO 340 I=l,MM

DO 340 J=l,MM

IF(IR(I,J).LT.2) GO TO 340

DO 330 K=l,MM

DO 330 L=l,MM

IF(IR(K,L).LT.2) GO TO 330

IF(IR(I,L).EQ.2).OR.(IR(K,J).EQ.2» GO TO 330

WRITE(6,970) I,J,K,L

970 FORMAT(17H$FAILS 2 ND AXIOM,4I5)

HOP=.TRUE.

330 CONTINUE

340 CONTINUE

IF(HOP) GO TO 350

WRITE (6,971)

971 FORMAT(18H$PASSES 2 ND AXIOM)

C TEST 3 RD AXIOM

350 HOP=.FALSE.

DO 365 I=l,MM
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DO 365 J=l,MM

IF(IR(I,J).LT.2) GO TO 365

DO 360 K=l,MM

IF(IR(J,K).LT.2) GO TO 360

DO 355 L=l,MM

IF((IR(I,L).LT.2).AND.(IR(L,K).LT.2)) GO TO 356

355 CONTINUE

GO TO 360

356 WRITE(6,990) I,J,K,L

990 FORMAT(17H$FAILS 3 RD AXIOM,4I5)

HOP=.TRUE.

360 CONTINUE

365 CONTINUE

IF(HOP) GO TO 370

WRITE(6,991)

991 FORMAT(18H$PASSES 3 RD AXIOM)

370 WRITE(6,993)

993 FORMAT(22H$END OF SEMIORDER TEST)

GO TO 1050

1001 WRITE(6,1020)

1020 FORMAT(45H$X SIZE GREATER THAN 7 so SKIP THIS STRUCTURE)

1050 READ(5,900)NN

IF(NN.EQ.8) GO TO 100

IF(NN.EQ.9) GO TO 1330

GO TO 1050

C SWITCH LESS THAN 0 PRINT MESSAGE
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C AND TERMINATE THIS STRUCTURE ONLY

1000 WRITE(6,1010)

1010 FORMAT(36H$TERMINATE FOR SPS/SEMIOVALUE LSS 0)

GO TO 1050

1330 WRITE(6,1011)

1011 FORMAT(26H$ALL STRUCTURES TESTED EOJ)

RETURN

END
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C ASSIGN

C CONTROL CARDS

C 1 CARD WITH PQRSTUVWXY IN COL 1-10

C 2 NUMBER OF ATOMS IN 12 COL 1,2

C 1-NN ATOMIC VALUES IN 14 COL 1-4

C

C ALL INPUT, OUTPUT ETC DONE IN

C INTEGER FORMAT

DIMENSION IB(1024) ,IAT(10) ,IU(10),IW(20) ,IOT(10) ,IS(1024) ,NUM(1024 )

COMMON IB,IAT,IU,IW,IOT,IS,NUM

EQUIVALENCE(Z,IZ)

DO 10 1=1,1024

10 IB(I)=I-1

IU(1)=2

IU(2)=3

IU(3)=5

IU(4)=9

IU( 5)=17

IU(6)=33

IU(7)=65

IU(8)=129

IU(9)=257

IU(10)=513

READ( 5,910) IW

910 FORMAT(20A1)

READ(5,900) NN
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900 FORMAT(I2)

C NN ~ NO OF ATOMS

DO 20 I~l,NN

READ(5,902) IAT(I)

902 FORMAT(I4)

20 CONTINUE

MM~2**NN

DO 25 I~l,MM

IS(I)~O

NUM(I)~O

25 CONTINUE

DO 30 I~l,MM

DO 30 J~l,NN

KK~IU(J)

Z~AND(IB(I),IB(KK))

IF(rZ.LE.O) GO TO 30

IS(I)~IS(I)+IAT(J)

NUM(I)~NUM(I)+l

30 CONTINUE

WRITE (6,940) MM

940 FORMAT(lH1,llHTHERE ARE , I4,25H- ELEMENTS IN THE ALGEBRA)

DO 60 KL~l,NN

DO 50 I~l,MM

IF(NUM(I).NE.KL) GO TO 50

JJ~O

ICNT~O
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DO 40 J=l,NN

KK=IU(J)

Z=AND(IB(I),IB(KK))

IF(IZ.LE.O) GO TO 40

JJ=JJ+1

IOT(JJ)=IW(J)

ICNT=ICNT+1

40 CONTINUE

LL=ICNT+1

DO 45 J=LL,lO

45 IOT(J)=IW(J+10)

WRITE(6,950) (IOT(J),J=l,lO),IS(I)

950 FORMAT(lH ,10X,10A1,5X,lH=,5X,I10)

50 CONTINUE

60 CONTINUE

RETURN

END
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