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better for a majority of subjects in Group 2. In fact, a paired t-test

showed a significant difference in the two types of fit for Group 2 but not

for Group 1 (p = .05). This is somewhat surprising in view of the finding

that the sensitivity index was significantly larger for the middle cues in

Group 1 but not in Group 2: larger a values for the middle cues would be

expected to enhance the appearance of curvilinearity in the ROC space. A

straight line of slope greater than one would probably do much better for

several of the subjects (subjects 8, 9, 10, 11 especially) in Group 1 than

does the straight line of slope one.

Latencies

Figure 9 presents the mean latencies plotted against r for the

two groups. There are several aspects of these data Which bear comment.

The latencies seem to differ according to which stimulus type was

displayed, and there is a crossover of the 81 and 82 latencies,

with the', 81 latencies being longer than the 82 latencies when r < ~

and shorter than the 82 latencies when r >~. The latencies conditional

on the response made by the subject also show a crossover: the, ~ la

tencies are longer than the A2 latencies when r < ~ and shorter than

the A2 latencies when r > ~.

Conditionalizing on the joint event of an Ai 8j
reveals a cross-

over effect of the type noted for the Ai and 8.
J

latencies, both for

correct and incorrect responses. The fact that the A1S
2

and A281

latencies follow the same general form as the ~ and A2 latencies

respectively, suggests the possibility that the differential stimulus

effect is low on incorrect trials.
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Correct responses are associated with shorter response times on the

average in these data for both groups, but the overall average latencies

appear to be longer when r > ~ for Group 2, with no appreciable difference

evident for Group 1.

Finally, the members of Group 2 seem to have responded more slowly

on the whole than did those of Group 1, but the difference was non-

significant according to an independent t-test.

Confidence Ratings

confidence rating, where C~ refers to confidence rating number k.

It will be recalled that there were four confidence ratings with CRl

representing the most confident response possible, ranging down to CR4
as the confidence rating the subject was instructed to give when he felt

he was guessing at random. The major effect to be noted is a general

regression of P(~181) and p(~182) toward ~ as the confidence rat-

ing went 'from 1 to 3; at CR4 there is an increase or decrease in the

proportion of ~ responses made independent of whether an 81 or an

8
2

was presented. If r >~, the proportion of Al responses increased

given and if the proportion of responses decreased

given CR4, Thus we might infer that the subjects were able to grade their

performance in an effective manner employing and to

rank their accuracy in decisions that were made on a sensory basis. Per-

, formance on CR4, on the other hand, appears to reflect the subjects'

response biases, Although behavior in Groups 1 and 2 was highly similar,

Group 2 seems to have used CR2 in a way slightly different than did

Group 1. A slight increase in the A2 bias seems to occur in Group 2

given CR
2
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THEORETICAL ANALYSIS

In this section, several cases of the general recognition-confusion

model described earlier will be applied to the ROC data with the aim of

specifying those models that correspond with the present experiment.

First, Cases 1 and 2 as developed earlier (page 17) will be tested against

the data and compared with one another as to goodness of fit. Then, one

of these cases will be employed to investigate whether.the result p(~) f ~

seems to follow from an asymmetry in confusability or an asymmetry in the

guessing bias. Finally to be considered are two cases that assume, in

contrast to Cases 1 and 2, that either the signals are confused with one

another, or with the noise symbols, rather than assuming that the noise

symbols are confused with the signals.

Case 1 and Case 2

Since Cases 1 and 2 were derived in detail earlier, it will suffice

here to present their associated activation matrices. The activation

matrix for Case 1 is

8
0

8
1 s2

Zo u (l-u)~ (l-u)~

Ni
; Zl 0 1 0 ,

Z2 0 0 1
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Each of the two models has six free parameters: the activation

parameter, u or v', the saJI!Ple size d; the four· bias parameters,

and The method of estimation for each subject con-

and the

sisted of consecutively setting d equal to 1, 2, 2, .•• , 15, 16;

for each of these d values the sensitivity index, a function of u

(Case 1) or v (Case 2) and. d, was set equal to the intercept of

the straight line obtained by orthogonal regression and the resultant

"equation" solved for u or v. For some values of d, the ouly so-

lution to the equation was a u or v greater than one; when this

occurred, the parameter u or v was set equal to 1. Next, the guess-

ing bias for each of the four points in the ROC space was obtained from

the expression for P(~ICh) (involving u· or. v, gh and d

observed value for this quantity. The six estimated parameters were then

used to predict p(~IS2) and p(~IS1) for the four cues after which

the sum of the squared deviations of the observed points from the predic-
4

ted points was calculated: L([p(t)(JL IS C) - P(o)(A Is C )]2 +
h=l --l 2 h 1 2 h

[p(t)(~IS1Ch) - p(o)(~IS1Ch)f) where t refers to the theoretical or

predicted value and 0 to the observed value. Thus, for each value of

d from 1 to 16, values of the other five parameters were obtained and



used to provide a fit to the four points in the ROC space •. After this

vas accomplished for each value of d, that set of parameter values

that yielded a minimum sum of squared deviatiare of predicted from ob-

served points was selected.

Tables 6 and 7 present means and standard errors for the estimated

parameters, for the predicted and observed coordinates in the ROC'space

and for the sum of the squared deviations of the predicted from the ob-

served points. The fits for Groups 1 and 2 are presented separately.-.
The most strikip.gfeature of these data is that Cases 1 and 2

essentially reduce to the same model. That is, when u = v = 1, Ni

becomes the identity matrix and. the two cases are equivalent. Only

three subjects out of twelve in Group 1 and two out of twelve in Group 2

had ufl. These u values were .94, .96, and .97 for the Group 1 sub-

jects and .98 for both the subjects in Group 2. Estimated v values

were 1 for all twelve subjects in each group. Under the assumptions of

the model, this result implies that there was a negligible amount of

confusion of the noise symbols with the signals.

A second interesting result is that the estimates of the bias para-

meters reflect much more strongly than did P(~) (averaged over subjects

in each group) the apparent tendency to respond ~ more often than ~.

Since for this analysis P(~IS2) and P(AlIS1) reduce to

where a diD, the difference in P(~), corresponding to a difference
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in the guessing bias of gl - g2' is Pl(Al ) - P2 (Al ) = (1-a)·(gl-g2)·

Hence, an attenuated difference in P(~) is expected.

Tables 6a and 7a indicate that the Cl and C
4

points were fit some-

what better than the and C
3

points. Finally, it is interesting that

the standard errors of the observed points are closely approximated by the

standard errors of the predicted points (Tables 6b, 7b).

Case la and Case Ib

The result (gl + g2 + g3 + g4)/4 < -Jc may follow from an asymmetry

in response bias or it may be due to the noise symbols being more easily

confusable with e than with (]). Since Cases 1 and 2 fit equally well,

the simpler Case 1 will be used here to investigate whether either of ~he

two hypotheses (response bias vs. confusability) is favored over the other.

To evaluate the proposition that there was an asymmetry in confusion,

it was assumed that the subjects' probability matched (gh = Yh ) but that

q I -Jc, i.e., that the likelihood of confusing a noise symbol with signal

symbol zl'CD, was not the same as the likelihood of confusing a noise

symbol with signal symbol Z2' e. Three parameters then remained to be

estimated: d, u, and q. This model will be denoted Case lao Its ac-

tivation matrix is

So sl s2

Zo u (l-u)q (l-u) (l-q)

N. Zl 0 1 0
l

Z2 0 0 1

A model that will be referred to as Case Ib was used to obtain a fit

under the hypothesis that an asymmetry existed in the efficacy of El and

E2 . Employing the simple linear model on the guessing bias:
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Table 6a.

Means Associated with Case 1 and Case 2

Fits to ROC Data for Group 1.

Parameters

d u gl g2 g3 g4

Case 1 6.667 .988 ·702 .516 .228 .191

Case 2 6.417 1.000 .679 ·559 .264 .196

CJ\ ROC Points and Goodness-of-Fit MeasureCD

C1 C2 C
3

C4

P(~182) p(~1 81 ) P(~182) P(~181) P(~182) P(~181) P(~182) P(~181) L(DEV)2

Case 1 .437 .837 .340 ·755 .163 .576 .133 ·533 .008

Case 2 .436 .837 .349 ·750 .169 ·570 .132 ·533 .008

Observed .431 .839 .318 ·770 .159 .583 .135 ,525



~

Table 6b.

Standard Errors of the Means Associated

with Case 1 and .Case 2 Fits to ROC Data for Group 1.

Parameters

d u gl g2 g3 g4

Case 1 1.163 .006 .065 .067 .047 .040

Case 2 1.163 .000 .059 .051 .043 .040

ROC Points and Goodness-of-Fit Measure

C1 C2 C
3 C4

p(J\IS2) P(A1 IS1 ) p(J\ls2 ) p(J\IS1 ) p(J\IS2) p(J\IS1 ) p(J\IS2 ) p(J\IS1 ) L:(DEV)2·

Case 1 .081 .033 .065 .039 .046 .049 .040 .053 .002

Case 2 .081 .034 .064 .041 .046 .052 .040 .053 .002

Observed .079 .036 .053 .044 .038 .057 .042 .055



Table 7a.

Means Associated with Case 1 and Case 2

Fits to ROC Data for Group 2.

Parameters

·997 ·731 .757Case 1

d

7.083

u gl g2 g3

.ll2

g4

.103

-'l
o

Case 2 6.833 1.000 .725 .755 .115 .111

ROC Points and Goodness-of-Fit Measure

C1 C2
C . C43

p(~182) p(~l 81 ) p(~1 82 ) p(~1 81 ) P(~182) P(~181) P(~182) p(~1 81 ) i:(DEV)2

Case 1 .429 .869 .425 .866 .070 ·5ll .070 ·5ll .020

. Case 2 .439 .866 ..438 .864 .072 .498 .073 ·500 .021

Observed .434 .865 .383 .869 .071 .488 .071 ·502



Table 'lb.

Standard Errors of the Means Associated

with Case 1 and Case 2 Fits to ROC Data for Group 2.

Parameter~

d u gl g . g3 g42

Case 1 1.l2l .002 .054 .035 .023 .020

Case 2 1.135 .000 .053 .035 .035 .020

--l
f-' ROCPoirits and Goodness-of-Fit Measure

C1 C2 C
3

C4

p(i).ls2 ) p(i).IS1 ) P(A1 IS2) p(i).lsl ) p(i).ls2 p(i).lSl} p(i).ls2 ) p(i).lsl ) E(DEV)2

Case 1 .067 .020 .060 .023 .019 .063 .017 .060 .005

Case 2 .067 .020 .061 .023 .019 .063 .017 .060 .005

Observed .065 .021 .047 .024 .020 .056 .016 .050



Learning function Stimulus type Feedback Probability

(1-8)gn_l,h + 8 S' E Yhl,n-l,h l,n-l,hg =
n,h (1_8') S E l-Yhgn-l,h 2,n-l,h 2,n-l,h

where n refers to trial number. It can then be shown that

Hence, rather than estimating·the gh values separately, we can reduce

the number. of parameters to three (d, u,~) and at the same time obtain

an index of the relative effectiveness of E2 and El (~) . In general

we would expect to find ~ > 1 in the present data since this inequality

would imply a greater bias for the A2 response. The activation matrix

for this model is identical to that of Case 1.

The method of estimation was similar to that used for Cases 1 and 2;

. the only difference was that ~ and q were estimated for each subject

from expressions containing the overall average (over cues) of P(Al ). For

Case la,

d
( d) d 1 l-u ]- 2[ 1- - u + - ----D D l-u

q

and for Case lb,

1
II dl-u

1- u

Ud(l_~)
D

----------=:.---od-----od - 1

ptA IC ) - l[l_ (1- ~)ud _ l _l-_u_] Y l-u
1 h 2 D D l-u - h l-u

The results of these fits are presented in Tables 8 and 9 in a

manner comparable to that used for Cases 1 and 2.

Table 8 shows a superiority in terms of L(DEV)2 of Case la over

Case lb for Group 1. However, this is offset by the fact that one subject
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in Group 1 (subject 5) had to be excluded from the data in Table 8, since

there was no set of parameters satisfying the constraints of probability

measurement that could be estimated for that subject. Also, after subject

5 was deleted, there were still six sUbjects who were fit better by Case lb,

as opposed to five that were fit better by Case lao

Group 2 subjects (Table 9) are fit better by both models than are

the Group 1 subjects, and further, Case lb fits Group 2 better than Case

la in terms of I(DEV)2 and in terms of the number of subjects (excluding

subject 3, who could not be fit with Case la) fit better by Case lb (seven

out of eleven). The observed averages and standard errors in Tables 8 and

9 excluded subjects 7 and 3 in Groups 1 and 2, respectively.

The reader should note that, as was expected, the fits were sub-

stantially better when six parameters were estimated from the data (Cases

1 and 2). Also, the average values of q and ~ clearly reflect the

Case 3 and Case 4

Cases 1 and 2 were based on the proposition that confusion occurred

when a Zo was processed but not when a signal was processed. In this

section two cases that include an alternative assumption will be investi-

gated; namely, confusion may result from the processing of a signal symbol

but not from the processing of a noise symbol. Case 3 posits that pro-

cessing a signal symbol can lead to an So activation but not an activation

of the hypothetical sensory state of the alternative signal. Thus,

So sl s2

Zo 1 0 0

N. ~ Zl l-a a 0
l

Z2 i-a' 0 a'
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Table 8a.

Means Associated with Case la and Case lb

Fits to ROC pata for Group l.

Parameters

d u '1. qJ gl g2 g3 g4

Case la 8.545 ·922 .266 ·750 .600 .400 .250

Case lb 6.8l8 .989 .273 .567 .4l3 .254 .l53

ROC Points and Goodness-of-Fit Measure

Cl C2 C
3

C4

P( Al ls2 ) P(Allsl ) P(Al ls2 ) P(~ISl) P(~IS2)· P(~ISl) P(~IS2) P(~ISl) E(DEV)2

Case la .308 ·76l .262 .7l6 .202 .656 .l56 .6l0 .080

Case lb ·350 ·758 .268 .675 ~l79 .587 .l2l .529 .096

Observed .388 .832 .280 .76l .l29 .598 .l23 ·545



--:J
Vl

Table 8b.

Standard Errors of the Mean.s Associated

with Case la and Case Ib Fits to ROC Data for Grnu:P l.

.t'aralJieters

d u q qJ gl g2 g3 g4

Case la l.269 .030 .063 .000 .000 .000 .000

CaE·" Ib l.304 .006 ·522 .046 .048 .041 .031

ROC Points and Goodness-of-Fit Measure

Cl C2 C
3

C4

p(lJ..IS2) P(A1IS1 ) P(~IS2) P(~IS1) p(lJ..IS2) P(~IS1) p(lJ..IS2) p(lJ..IS1 ) L:(DEV)2

Case la .057 .029 .050 .033 •.043 .041 .039 .048 .039

Case Ib .061 .037 .053 .047 .042 .056 .031 .063 .058

Observed .079 .036 .053 .044 .038 .057 .042 .055



Table 9a.

Means Associated with Case la and Case lb

Fits to ROC Data for Group 2.

Parameters

Case Ia

d

8.909

u

.948

'1

·305

qJ gl g2

.750 .900

g3n g4

.100 .250

--.l
0\

Case Ib 7.545 .986 3.70 .530 .752 .046 .124

ROC Points and Goodness-of-Fit Measure

CI C2 C
3

C4

P(~IS2) P(AII S1) P(~IS2) P(~IS1) P(AII S2) P(A1 Is1 ) P(~IS2) P(~ISl) 2:(DEV)2

Case la ·303 ·779 .348 .825 .106 .582 .151 .628 .066

Case Ib .312 .767 .419 .874 .052 ·507 .095 ·550 .053

Observed .386 .854 ·331 .861 .074 .515 .068 .536



Table 9b.

Standard Errors of the Means Associated

with Case la and Case lbFits to ROC Data for Group 2.

Parameters

d u '1 <p gl g2 g3 g4

Case la 1.195 .012 .039 .000 .000 .000 .000

Case lb 1.101 .010 1.22 .045 .042 .066 .015

-:;
---J

ROC Points and Goodness-of-Fit Measure

Cl
C2 C

3
C4

P(Al I82 ) P(~181) P(~[ 82 ) P(~IS1) P(~IS2) i?(~IS1) P(~IS2) P(A1IS1 ) E(DEV)2

Case la .044 .024 .052 .020 .017 .053 .021 .045 .Oll

Case lb .043 .029 .056 .022 .015 .061 .0l6 .054 .Oll

Observed .065 .021 .047 .024 .020 .056 .016 .050



Case 4, on the other hand, supposes that the two signals may be confused

with one another but never with a Zo symbol. In this case,

So sl s2

Zo 1 0 0

N. ~ Zl 0 a l-a
~

Z2 0 1 ... a , a'

Estimation for Case 3 was accomplished by stepping d from 1 to 16

and for each d setting a ~ (I/d)o16 unless (I/d)o16 > 1, in which

case a ~ 1; I was the intercept of the straight line (of slope 1)

obtained by the method of least s~uareso Then a' was determined from

and cp from

4
Cp~tL:

h~l

I'h 'd ad
(--.--)[1-(1-1' )~ - I'h ~l ]1-1'h h 10 .LO

For the ROC analysis a and d are tied together in the expression
ad
lb

and a' and d are tied together in the expression
a'd
lb" We can let;

ad/16 ~ 01 and a'd/16 ~ 02 and argue that in essence, only two param

eters are being estimated here plus one more for the estimate of cpo

As for Cases 1 and 2, those parameter values that yielded a minimum sum

of deviations of observed points from theoretical points were selected

for each subject.

For Case 4, d is again run in steps of 1 from 1 to 16; for each

a'



Here the parameters a, d and a', d are distinct in the expressions for

P(A11s2) and P(~IS1) and hence are associated with three degrees of

freedom. We therefore set gh = Yh for this case. Again, those parameter

values estimated in this manner are selected that minimize Z(DEV)2.

Tables 10 and 11 give the means and standard errors of the parameter

estimates, and the predicted and observed points in the ROC space. As

estimated for both groups, cp again reflects the bias to the A2 response,

although not so dramatically as in Case lb; this probably results from the

capability of 01 and 02 to reflect the

and a' in Case 4 also predict the P(Al )

A
2

bias. The parameters a

asymmetry, although through

intersignal confusion instead of signal-noise confusion.

Table 12 presents the goodness-of-fit measure for individuals in the

four conditions. Note that as predicted earlier subjects 8, 9, 10 and 11

of Group 2 are fit much better by Case 3 than by any of the other cases.

This is due to a slope greater than one evident in their ROC data. Table

13 indicates that in terms of the number of subjects fit best, Case 3

provides the best description for Group 1, but Case 4 is best for Group 2.

Overall, there is a tie between Case 3 and Case 4. The second part of

Table 13 shows the average of Z(DEV)2 over subjects (excluding subject 5

in Group 1 and subject 3 in Group 2); of the three parameter models, Case 4

was supercendent for both groups. ThUS, of the three-parameter models,

Case 4 provides the best description of the data. Finally, it should be

remarked that in addition to providing a reasonable fit to the data in terms

of Z(DEV)2 for each subject, the models appear to do ~uite well in fit-

ting the group means. In particular, the approximations of the means of

the predicted values to the means of the observed values are ~uite striking

for Cases 1 and 2.
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Table lOa.

Means Associated with Case 3 and Case 4

Fits to ROC Data for Group 1.

Parameters

a'ad gl g2 g3 g4

.674 .520 .338 .211

10.545 .768 .894 .750 .600 .400 .250

°2 cp

·535 1.59

°1

.383

Case 4

Case 3

CD
0 ROC Points and Goodness-of-Fit Measure

Cl C2 C
3

C4

P(~IS2) P(Al IS1 ) p(~IS2) P( A
l l Sl) P(~IS2) p(~1 Sl) P(Al ls2) P(~IS1) Z(DEV)2

Case 3 .312 .804 .242 ·710 .167 ·599 .101 .520 .089

Case 4 .315' .769 .264 .718 .196 .650 .145 ·599 .075

Observed .388 .832 .280 .761 .129 .598 .123 .545



g;

Table lOb.

Standard Errors of the Means Associated

with Case 3 and Case 4 Fits to ROC Data for Group l.

Parameters

"l "2 cp d a a' gl g2 g3 g4

Case 3 .073 077 .258 .035 .040 .038 .030

Case 4 .930 .04l .062 .000 .000 .000 .000

ROC Points and Goodness-of-Fit Measure

Cl C2 C
3

C
'+

p(J\IS2) p(J\ISl ) P(Al ls2) p(J\ISl ) p(J\IS2 ) p(J\1 Sl) P(Al ls2) p(J\ISl ) E(DEV)2

Case 3 .060 .030 .053 .040 .04l .050 .030 .056 .05l

Case 4 .059 .030 .05l .033 .042 .040 .037 .047 .038

Observed .079 .036 .053 .044 .038 .057 .042 .055



g'

Case 3

Case 4

Table lla.

Means Associated with Case 3 and Case 4

Fits to ROC Data .for Group 2.

Parameters

0"1 0"2 cp d a a' gl g2 g3 g4

.419 .540 1.85 .645 .837 .072 .184

10.182 .785 .945 . ·750 ·900 .100 .250

i.-'

ROC Points and Gobdness-of-Fit Measure

C1 C2 C
3

C4

P(~IS2) P(~IS1) P(~IS2) p(~1 Sl) p(~1 82) P(A1 1s1 ) P(~IS2) p(~1 Sl) \ E(DEV)2

Case 3 .294 .798 .385 .910 .030 .460 .079 .526 .061

Case 4 .306 .782 .360 .837 .069 .546 .124 .600 .047

Observed .386 .854 .331 .861 .074 ·515 .068 .536



Table llb.

Standard. Errors of the Means Associated

with Case 3 and Case 4 Fits to ROC Dat~ for Group 2.

Parameters

°1 °2 cp d a a' gl g2 g3 g4

CD
\.)J

Case 3

'Case 4

.062 .072 .349 .035 .023 .010 .022

.943 .032 .022 .. 000 .000 .000 .000

ROC Points and Goodness-of-Fit Measure

C1
C2 C

3
C4

P(~IS2) P(~IS1) P(~IS2) P(~IS1) P(~IS2) P(A1 Is1 ) P(~IS2) P(A1IS1 ) 1:(DEV)2

Case 3 .046 .025 .060 .012 .005 .059 .012 .053 .019

Case 4 .046 .022 .054 .018 .014 .055 .020 .047 .008

Observed. .065 .021 .047 .024 .020 .056 .016 .050



Table 12.

E(DEV)2 for Group 1 and Group 2 Subjects.

Group 1 GToup2

Sub- Case 1a Case lb Case 3 Case 4 Case 1a Case 1b Case 3 Case 4
ject

1 .065 .049 .043 .039 .035 .041 .049 .034

2 .066 .082 .051 .065 .078 .035 .039 ' .034

3 .008 .009 .019 .007 --- .211 --- .176

4 .003 .006 .040 .003 .003 .006 .0l4 .003
,

5 --- .080 .065 .139 .063 .086 ' .097 .061

~' 6 .014 .008 .008 .013 .082 .136 .247 .081

7 .004 ' .001 .001 .00l .060 .050 .069 .024

8' .0l4 .006 .004 .012 .061 .023 .014 .038

9 .035 .023 .023 .028 .123 .062 .037 .075

10 .436 .689 .60l .433 .045 .020 .004 .034

II .232 .172 .182 .214 .137 .096 .056 .103

12 .005 .008 .009 .005 .041 .024 .040 .034



Table 13.

Number of SUbjects Fit Best By Each·

of the Three Parameter Models

(Subjects with one or more ties for closest fit were omitted.)

Group 1 Group 2 Total

Case la

Case lb

Case 3

Case 4

2

1

3

1

o

1

4

6

2

2

7

7

Average E(DEV)2

6 Parameters
Case 1 Case 2

3 Parameters
Case la Case lb Case 3 Case 4

Group 1

Group 2

.008·

.020

.00P

.021

.080

.066

.096

.066

.089

.061

.075

.047



DISCUSSION

The result of the comparison of the straight line and the curvi

linear fits to the ROe results was that they did equally well for Group 1,

but the straight line provided a significantly inferior fit to that of

the curved line for Group 2. It maybe that there is a strong element

of curvilinearity in the Group 2 data that is unrelated to a higher sen

sitivity on the less biased cues (in terms of variable sensitivity notions).

However, there is an aspect of the data that argues against this hypoth

esis. Although sensitivity for the low-correlated cues did not differ

significantly from sensitivity for the high-correlated cues for Group 2,

it can be seen from Table 5 and Table 14 that those subjects who contri

buted most heavily to the poorer performance by the straight-line fit

(primarily subjects 8, 9, 10, and 11) had larger sensitivity indices

associated with one or more of their lower biased CUes than for their

higher biased cues, and their higher biased cue-points tended to be

closer to the axes than was the case for other subjects. Thus, the source

of the difference in fit for the straight line and curved line was a dif

ference in sensitivity; furthermore, the resulting set of points could be

fit better by a curved line than by a straight line (as opposed to Group 1

subjects who also had differences in sensitivity) because the points lay

along the axes where a signal detectability curve could fit them. There

were, of course, other Group 2 subjects with different sensitivity esti

mates for the four cues, but the observed ROC points were distributed

further from the axes of the ROC space. As noted earlier, a straight

line with variable slope would apparently fit subjects 8, 9, 10, and 11
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Table 14.

Estimates of (]

Group 1 Group 2
Sub-
ject Cl C2 C3 c4 Cl C2 C3 c4

1 .02 .l4 .19 .05 .26 .21 .31 .40

2 ·57 .66 .56 ·52 .28 .35 .30 .29

3 .33 .33 ·39 .24 .04 .05 .17 .01

4 .35 .44 .38 .36 ·72 ·78 .80 .76

5 .01 .13 -,08 .02 .26 .40 .38 .39

6 .35 .39 .40 .42 .15 .38 .18 .34

7 .86 .91 .90 .90 .22 .30 ..21 .25

8 .65 .65 ~60 .61 .81 .65 ·57 ,63

9 .46 .42 .45 .47 .35 .40 .22 .24

10 .37 .37 .19 .22 .83 .88 ·72 ·75

II .10 .21 .27 .12 .54 ·77 .50 .41

12 .80 ·76 .83 ·73 ·78 .64 .78 ·72

Average .41 .45 .44 .39 .44 .48 .43 .43



in Group 2 quite well. It is reasonable that an experiment of the simple

detection or recognition type should have difficulty in distinguishing

between signal detectability curves and variable sensitivity theory

curves, since the less biased points are assumed in both theories to be

closer to (0,1) in the ROC space than are the more biased points.

In application to the present experiment, Case 1 and Case 2 essen

tially reduced to a fixed sample size model where

and

(1 - ~)g .

Since the display size in the present experiment (16) was identical to

one of the conditions in an earlier experiment by Estes andcTaylor

.(1965), it should be interesting to compare the present estimates of d

tQtheir P, the estimated average number of elements (symbols) pro

cessed according to the serial-processing model. From Tables 6 and 7 we

can see that the average d was approximately 6.5 for Group 1 and about

7 for Group 2. This is quite close to P = 5.57 for D = 16 in the

Estes and Taylor experiment.

Table 15 shows that estimates of d were roughly consistent for

those models that did not assume probability matching (estimates of d

were not obtained for Case 3). The reason that Cases la and 4 yield

larger estimates of d is probably that they explain the shift or asym

metry in P(Al ) across the cues by means of activation variables rather

than through the bias mechanism as do the other models. To the extent
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'rab1e 15.

Est:ilnates of d

for Various Recognition-Confusion Models

Group 1

Subject, Case 1 Case 2 Case la Case Ib Case 4

1 1 1 2 1 8
2 9 9 10 7 11
3 6 5 6 6 9
4 7 6 10 7 14
5 1 1 1 5
6 6 6 8 6 11
7 14 14 16 14 15
8 10 10 12 10 13
9 8 7 8 7 9

10 4 4 5 1 7
11 2 2 3 2 5
12 12 12 14 14 14

Average 6.70 6.40 8.55 6.82 10.08

Group 2

SUbject Case 1 Case 2 Case la Case Ib Case 4

1 5 4 5 4 6
2 5 5 6 5 7
3 1 1 1 1 2
4 12 12 15 14 15
5 5 5 6 5 7
6 4 3 5 5 10
7 4 3 5 4 7
8 11 10 12 10 12
9 4 4 4 9

10 13 12 15 13 15
11 9 8 10 8 11
12 12 11 13 11 13

Average 7·10 6.83 8.46 7·55 10.18



that this shift was an important characteristic of the data, the estimates

of d will differ for the two types of models.

In a different type of psychophysical experiment, Sperling

(1960) and Averbach and Sperling (1961) found under stimulus conditions

comparable to those in the present experiment that approximately 3/4 of

the presented letters were "available" to the subjects. In the present

experiment this would mean that 12 letters were available to the subjects.

Although the average value of d for the best fitting three-parameter

model, Case 4 (about 101 was substantially larger than d for the other

cases, d is still less than 12. The probable reason for the disparity

between Sperling's values and our estimated values of d is that his

subjects were not required to process all 12 letters. Thus, it may be

that the subject selects a sample from the available pool of symbols

which he then proceeds to process. An alternative model that might do

well would assume that d is equal to the number of symbols initially

available but that a decay of the type postulated by Estes and Taylor

(1964) sets in immediately after stimulus offset. If this were the case,

d would have to be an increasing function of D, according to experi

ments involving different values of D performed by Estes and Taylor

(1965) and Sperling (1960).

A striking facet of the data which was not commented on earlier is

the increase in the sensitivity estimates (oh) over test sessions. Note

that while this result may cause some difficulty in the exact interpreta

tion of the estimated parameters, as long as a changes in the same way

for the different cues, this change does not affect the comparison between

theories that predict straight line ROC curves and theories that predict

curvilinear ROC curves •. This follows from the fact that an average of
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straight lines is a straight line. Figures 11 and 12 were obtained using

the fixed sample size model where 0h represents d/16 (d was not con

strained to integral values here) and the bias parameters were estimated

separately for each cue and subject, and averaged over subjects in each

group. Note that the increase in 0h is not accompanied by a regression

of the gh toward 1/2 as one might predict under the variable sensi

tivity concept. It is also interesting that Group 1 shows an increasing

shift in the bias parameters toward A2 • Support would be lent to the

notion that the p(~) asymmetry was due to an E2 advantage over El ,

as opposed to the hypothesis that z e was more confusable with the2' .,
-i

noise symbols than was Zl' (J), had Case lb fit Group 1 subjects better

than did Case lao Also, Group 2 was fit better by Case lb than by Case la,

but showed nogl decrease over days.

It is apparent from an examination of the bias functions for Group 2

that the gh does not accurately reflect the experimental correlations,

since and but The reason for

this failure by Group 2 to follow the schedule may be spatial generaliza-

tion. The linear arrangement of the cue lights was such that Cl and C4
were always on the outside, but and were always on the inside.

Although C2 and were the more highly correlated cues for Group 2,

their proximity and the subjects' knowledge that the two cues on either

side were positively correlated with different stimulus events may have

led to their failure to learn the actual cue-stimulus correlations.

The superiority of Case 4 (over the other three-parameter models

considered) in explaining the ROC data is somewhat surprising in view of

comments by the subjects obtained after the experiment. The prevalent
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response was that several of the noise symbols, J3 and G· in particular,

were often confused with ~ but that few if any of the noise symbols were

ever confused with <D. The failure of Case la to do a better job than it

did is possibly due to the untenability of the assumption that all the

Zo symbols were alike in confUsability with the signal symbols. However,

one might expect that this would be remedied in the estimations by the

high u value. An additional possibility that would. be interesting to

test is that Case la might do as well or better than Case 4 if gh were

treated as a free parameter. That is, the probability matching con

straint may not have affected Case la and Case 4 to the same extent. On

the other hand, since the basic form of both signals was a circle, it is

reasonable that there should be confusion between e and <D, although

the source of the asymmetry in confusion is not clear. The superiority of

Case 4 to Case 3 is probably due to the incapa1tty of Case 3 to provide for

the A2 bias without increasing the slope of the ROC curve. A detailed

description of the data might involve an activation matrix with entries in

all the cells, but it seems likely that inter-signal confusion was a

potent factor.

The remainder of the discussion will be devoted to the latencies

and the COnfidence-rating results.

Examination of Fig. 9 leads to the conclusion that if the recog

nition models applied to the ROC data can fit the latencies in this

experiment at all, they must do so by virtue of the Tk inclUded to

represent the number of ~t units re~uired to make a guessing response.

This is not to imply that the model is wrong; it does say that the form

of the latency functions as the guessing bias g varies is determined

by T rather than by I, which predicts (for example) an increase in

9i+

•



A
l

latencies as g increases. This prediction is contrary to the experi-

mental results. Even allowing a different T for the preferred and non-

preferred responses is not sufficient, since some of the latencies appear

to change continuously as a function of y (and therefore g). Since

the present model does not describe how T changes as a result of changes

in g, a detailed quantitative fit would seem unwarranted. However, it

is interesting to note in the present context that under the fixed sample

size model, the difference in the incorrect latencies conditionalized on

the occurrence on the non-preferred response and the preferred response

lisec.for Group 1

should be simply 1:",-1".
P P

T I - T
P P

Estimating this difference, we obtain

{
80

= 136 ~lsec.for Group 2

Neither of these quantities is far from the average difference of 50 msec.

in non-preferred and preferred response latencies obtained recently in a

probability learning study (Friedman, et al., 1964).

One reasonable alternative to the hypothesis ~hat the negative

correlation between latencies and y is due completely to T, is that

on some proportion of trials the subject, because of eyeblink, inattention,

eye tremor, etc., fails to obtain any sample at all and therefore responds

at once using his guessing bias. Actually,~this phenomenon was reported

fairly often by the subjects.
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If such trials were frequent relative to the number of trials when the

subject guessed after having processed all the symbols, then the kind of

latency results obtained here would be expected. This could occur only

if a model that allowed a fairly high rate of inter~symbol confusion ex-

plained the data.

An explanation can be obtained for the present confidence-rating

results from the recognition-confusion models by assuming that the sub-

ject partitions the time following stimulus offset into 4 successive

6t periods, or what amounts to the same thing, partitions the set of

possible activation positions into 4 distinct subsets. Suppose that if

an activation occurs in the most recent or first set of positions, he

gives his response a rating of one; if an activation occurs in the sec-

ond set, he gives it a rating of two. This continues until either an

activation occurs in a position located in the last set or the subject

processes all the symbols and then guesse~ if either of these events

occurs, lie uses CR4• The results (see Fig. 10) indicate that the

subjects were able to reserve CR4 for guessing responses. This is

shown by the tendency to convergence of the P(~IS1) and p(~IS2)

curves until they reach CR4; at this place both curves move in the

direction of the bias. The decrement in performance for CRl to CR
3

implies that the activation parameters must be a function of ~t. For

instance, Case 4 might take on the form:

So sl s2

Zo 1 0 0

N;l. Zl 0
i~l 1 i-l= vl ~vl

Z2 0 i-l i~l
l-v2 v2
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If we suppose that CR4 is reserved for guesses and that ak is the

maximum position included in

(k < 4)

(k < 4)

k = 4 •

To obtain an idea of how this function appears, let ak-ak_l = 4 for

all k < 4, then

4(k-l)(1_ 4)vl vl
if k<44(1-vl )

p(J\lsl~) . -

g k = 4

1 - 4(k-l) (1- 4)v
2

v
2 if k<4

P(~IS2~)

4(1~v2)

=

g k = 4 .

The qualitative form of these ·expressions is in line with the results and

indicates that meaningful predictions for confidence ratings can be de-

rived from the recognition-confusion models. To obtain a quantitative fit,
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the bounds of the partitions probably should be estimated and possibly

several forms of the activation matrix considered. Note, however, that

a constant Ni cannot explain the decrement in performance that occurs

as a function of k.·



SUMMARY

A cued-recognition paradigm was used to investigate behavior in a

psychophysical task that minimized the role of immediate memory but maxi-

mized discrimination behavior. A class of models that generates predic-

tions for several characteristics of a subject's choice behavior was

developed and applied to the ROC data for each subject. Certain models

appeared to provide an accurate description of the ROC results on a group

and individual basis, according to an orthogonal regression measure of

goodness of fit. Table 16 summarizes the various special recognition-

confusion models applied to the present data.

Cases 1 and 2, when applied to the ROC data, reduced to fixed sample

size models with N. = I, the identity matrix. Case 4, which assumes
l

intersignal confusion but nO signal-noise or noise-signal confusion, fit

the best of the four three-parameter models applied to the ROC data.

Under constraints on the gh values, Cases la and Ib did not reduce to

the fixed sample size models for several subjects, but estimates of u

remained high, thus supporting the notion of a low average noise-signal

confusion. There is an element of curvilinearity in the observed ROC

points which does not appear to follow from signal detectability assump-

tions. This curvilinearity could be associated with a sensitivity varia-

tion caused by differences in the bias parameter of the recognition-

confusion model.

The fixed sample size model correctly predicts that when d > 1,

the incorrect latencies will be longer than the correct latencies. How-

ever, the recognition-confusion models, as they are presently formulated,

99



Table 16

Summary of Recognition-Confusion Models Applied to Present Data

(For all the models below, the sample S consists of d symbols
sampled at randomo)

Case 1

Case 2

Case 1a

Case lb

*Case 3

Case 4

o

o

'1

(l-u)q

1

o

'1
(l-u)t

1

o

o

a

o

o

a

1-a'

.All gh values
estimated;

All gh values
estimated.

* Case 3 appears to have four parameters, but a and d, and a 1 and d
combine in such a way in the ROC space that essentially 2·parameters, 01 and
02 are being estimated where

P(A,.!SI) = °1 + (l-ol)g,

p(A,.IS2 ) = (1-0
2 )g .
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do not seem particularly helpful in explicating the finer aspects of the

latency results obtained in this experiment.

It was shown that pa.rticular recognition-confusion models a.re

capable of yielding confidence-rating predictions that are in general

agreement with the data.

Estimates of the number of symbols processed by the subjects com

pared favorably with earlier estimates in similar experiments, and these

results were discussed with regard to other methods of studying the num

ber of symbols apprehended in a brief interval.
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Table A-.l.

Table A-2.

Table A-3.

Table A-4.

Table A-5.

Table A-6.

Table A-7.

Table A-8.

Appendix

Observed Values of P(A11 S2) and ~(All Sl) for the

Separate Cues.

Observed Values of Proportion Correct p(c) for the

Separate Cues.

Average Latencies for Each Subject and Cue (Group 1,

Subjects 1-6).

Average Latencies for Each Subject and pue (Group 1,

Subjects 7-12).

Average Latencies for Each Subject and Cue (Group 2,

Subjects 1-6).

Average Latencies for Each Subject and Cue (Group 2,

Subjects 7-12).

g Estimates for the Fixed Sample Size Model (Group 1).

g Estimates for the Fixed Sample Size Model (Group 2).
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Table A-l

Observed Values of P(~IS2) and P(A1Is1)
for the Separate Cues

C1 C2 C3 C4
Subject P(~IS2) P( A1IS1) P(~IS2) P(A1Is1) p(~ls2) P(A1IS1) P(~IS2) P(~IS1)
Group 1

1 .886 ·910 ·597 ·737 .498 .696 .504 .547
2 .348 .918 .207 .865 .049 .606 .027 .541
3 .381 ·713 .336 .. 655 .184 .578 .205 .442
4 .218 ·572 .156 ·599 .163 .543 .150 .506

5 ·901 .918 ·737 .870 .486 .418 .264 .300
6 .312 .683 .228 .631 .094 ·504 .034 .493
7 .089 ·951 .049 .958 .028 .924 .026 ·922
8 .169 .822 .162 .813 .066 .669 .037 .644
9 .367 .822 .393 .808 .127 ·573 .109 ·578

10 .589 ·959 .587 .963 .033 .224 .019 .236
11 .831 .930 .278 .484 .121 .385 .202 ·322
12 .079 .873 .092 .848 .052 .879 .045 ·767

Aver. .431 .839 .318 ·770 .159 .583 .135 ·525

Group 2
1 .600 .890 .613 .841 .082 ·333 .056 .475
2 ·551 .834 .484 .860 .098 .407 .093 .382
3 ·921 ·933 .917 .944 .038 .194 .105 .090
4 .112 .829 .086 .861 .038 .833 .034 .798
5 .614 .875 .444 .840 .045 .429 .054 .440
6 .636 ·737 .323 ·713 .256 .424 .180 .514
7 .567 ·784 .472 ·769 .140 ·353 .164 .413
8 .146 .959 .297 .953 .034 .588 .030 .663

9 .442 ·781 .400 .801 .056 .265 .037 .278
10 .131 .962 .086 .965 .016 .735 .015 .767
11 .420 .951 .167 .934 .032 .500 .075 .477
12 .067 .843 .306 ·950 .022 .794 .011 .721

Aver. .434 .865 .383 .869 .071 .488 .071 ·502
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Table A-2

Observed Values of Proportion-Correct p(c)

for the Separate Cues

Group 1

Sub- C1 C2 C3 C4ject

1 .706 .602 ·577 .509
2 .849 .836 .812 .866

3 .690 .• 659 ·722 .706
4 .624 .697 ·718 .765
5 ·710 .620 .477 .631
6 .685 .688 ·752 .852

t .941 .955 .953 .961
8 .824 .823 .828 .883

9 ·775 ·728 ·753 .812
10 .820 .742 .668 .795
11 .741 .580 .682 .678
12 .885 .872 .920 .909

Aver. .771 ·734 ·738 .781

Group 2

C1 C2 C3 C4
1 ·772 ·796 .862 .825
2 .743 .825 .856 ·775
3 ·719 .858 .884 .694
4 .844 .866 .949 .924
5 .754 .810 ·901 .821
6 .643 ·709 ·709 .744
7 .696 .744 .811 .729
8 ·932 .927 .930 .892
9 .726 .781 .879 .790

10 ·939 .960 .960 ·930
11 .860 .923 .923 .814
12 .865 .924 .960 .923

Aver. .791 .844 .885 .821
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. Table A-3

Average Latencies for Each,Subjec~ and Cue

Group 1 E(L!A1Sl ) E(LI~S2) E(LI A2S1 ) E(LIA2S2) E(L)
Subject

Cl L217 L299 L506 L365 L259

C2 L284 L340 L448 L315 L328
1 C

3
L335 L437 L502 L393 L403

C4
L280 L328 L513 L359 L354

Cl Lll6 L275 L438 L134 L153

C2 L138 L534 L499 L066 Lll7
2

C
3

L078 L592 L317 Lll6 L153

C4 L061 L480 L338 L053 L095

Cl
L102 L345 L208 .985 1.130

C2 LOll . L344 L259 .996 L103

C
3

·922 L228 L301 L065 L090

C4 .858 L306 L102 L007 L050

C1 .978 L193 ;956 .862 .960

C2 .975 L220 .949 .838 .938
4 C

3 ·927 L122 .941 .861 .915

C4 .973 L103 .984 .855 .914

Cl .907 .942 L301 L906 .964

C2 L041 L080 L255 L374 L105
5 C

3
L025 L032 L216 L137 L105

C4 L27° L059 .849 L086 L054

C1 .955 L128 .967 .914 .964

C2 .916 .970 .954 L021 .962
6 C

3
.916 L139 LOn .910 .945

c4 ·739 L380 L015 .891 ·900
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·Table A-4

Average Latencies for Each SUbject and Cue

Group 1 E(LI~Sl) E(LI~S2) E(LI A2S1 ) E(LI~S2) E(L)
Subject

C1 1.326 1.785 1.618 1.299 1.340

C2 1.354 1.764 1.760 1.331 1.363
7 C

3
1.348 1.915 1.697 1.325 1.355

C4 1.357 1.800 1.623 1.323 1.346

C1 .958 1.155 1.189 .919 .989

C2 .930 1.271 1.262 .948 ·995
8 C

3
.947 1.486 1.063 .955 .988

C4 .i)67 1.277 1.153 .908 ·950

C1 1.318 1.736 1.714 1.397 1.422

C2 1.458 1.711 1.830 1.437 1.535
9 C

3
1.477 1.938 1.574 1. 35;; 1.464

C4 1.567 1.889 1.514 1.283 1.399

C1 1.613 1.664 1.813 1.605 1.626

C2 1.651 1.624 1.839 1.591 1.639
10 C

3
1.657 1.741 1.676 1.632 1.650

C4 1.700 1.824 1.676 1.634 1.649

C1 1.073 1.072 1.365 1.547 1.108

C2 1.291 1.399 1.319 1.329 1.323
11 C

3
1.285 1.377 1.257 1.258 1.270

C4 1.3;;3 1.427 1.346 1.269 1.311

C1 1.163 1.473 1.578 1.129 1.201

C2 1.158 1.465 . 1. 5;;8 1.157 1.204
12 C

3
1.155 1.432 1.566 1.173 1.194

C4 1.200 1.539 1.511 1.202 1.231
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Table A-5

Average Latencies for Each Subject and Cue

Group 2 E(LIA1S1 ) E(LI~S2) E(LIA2S1 ) E(L! A2S2 ) E(L)
Subject

C1 1.527 1.707 1.438 1.311 1.525
C2 1.469 1.691 1.668 2.161 1.538

1 C
3

1.176 1.820 1.449 1.255 1.307
C4 1.386 1.715 1.369 1.209 1.273

C1 1.296 1.495 1.513 1.259 1.346
C2 1.249 1.932 1.397 1.225 1.302

2 C
3

1.297 1.233 1.190 1.194 1.201

C4 1.290 1.535 1.243 1.054 1.141

C1 .967 1.028 1.163 1.319 .998
C2 ·931 .929 1.175 1.077 .944

C
3 1.257 1.327 .856 .820 .849

C4 1.260 1.295 .858 .865 .906

C1 .793 1.469 1.248 .848 .882

C2 ·795 1.307 1.168 .841 .850
4 C

3
.802 1.192 1.285 .818 .837

C4 .839 1.464 1.252 .837 .874

C1 .984 1.063 1.399 1.190 1.055
C2 1.005 1.041 1.286 1.183 1.058

5 C
3

1.128 1.345 .936 ·950 .973
C4 1.139 1.427 1.037 .936 ·992

C1 1.843 1.867 1.969 1. 742 1.862

C2 1.848 1.946 1.939 1.830 1.873
6 C

3
1.680 1.957 1.955 1. 737 1.798

C4 1.767 1.989 1.885 1.778 1.818
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Table A-6

Average Latencies for Each SUbject and Cue

Group 2 E(LI~Sl) E(Lj~S2) E(LjA2S1 ) E(L[A2S2) E(L)
Subject

C1 1.452 1.509 1.771 1.638 1.532
C2 1.507 1.665 1.844 1.584 1.589

7 C
3

1.658 1.667 1.806 1.584 1.611
C4 1.602 1.785 1.785 1.595 1.647

C1 1.403 1.740 1.533 1.316 1.401

°2 1.415 1.517 1.508 1.434 1.423
8

°3 1.324 1.680 1.619 1.371 1.388

C4 1.353 1.734 1.615 1.360 1.389

C1 1.484 1.622 1.722 1.461 1.535
C2 1.490 1.800 1.701 1.481 1.540

9 C
3

1.511 1.803 1.459 1.239 1.290
C4 1.554 2.186 1.408 1.251 1.327

°1 1.479 2.096 1.700 1.383 1.485

°2 1.490 1. 743 2.100 1.342 1.497
10

C
3

1.468 2.138 2.141 1.346 1.386

°4 1.542 2·350 1.694 1.357 1.424

°1 1.021 1.209 1.315 1.300 1.091
C2 1.071 ·925 1.679 1.241 1.119

11
°3 1.018 1.418 1.122 1.033 1.047

°4 1.053 1.438 1.349 1.168 1.193

°1 1.444 1.678 1.574 1.334 1.438

°2 1.358 1.607 1.872 1.467 1.397
12

°3 1.414 1.777 1.494 1.350 1.366

°4 1.495 1.573 1.592 1.339 1.386

lOS
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Table A-7

Estimates of' g for the Fixed Sample Size Model

(* indicates the bias was indeterminate due to perfect performance).

Group 1

Cue 1 Cue 2
Sub- 1 2 3 4 5 6 Ave. 1 2 3 4 5 6 Ave.ject

1 .90 .91 .86 ·92 ·95 .93 ·91 .76 .87 ·73 ·71 ·53 .49 .68
2 .85 .87 .48 .83 ·79 .78 ·77 .63 .64 ·59 .29 .88 .60 .60
3 .65 .62 .47 .50 .43 ·73 ·57 .67 .44 .47 .44 .48 .47 .49
4 ·31 .24 .36 .36 .44 .27 .33 .19 .28 .16 .23 .40 .41 .28
51.00 .80 .94 .88 .91 .95 ·91 1.00 1.00 .88 .76 ·72 ·91 .88
6 ·70 ·55 .25 ·59 ·37 .46 .49 .64 ·51 .42 .18 .09 .35 03'7
7 .59 .92 .50 .00 * .00 .40 .53 ..86 .00 .00 .00 .00 .23
8 ·55 ·75 ·31 .00 .43 .00 .34 .60 .65 .23 .00 .25 ·54 .38

l-' 9 .63 .43 .67 ·73 .82 .60 .65 ·70 .60 .66 .70 .60 ·75 .67
0 10 ·79 .91 .97 1.00 1.00 1.00 .94 ·91 ·90 ·97 .92 .93 1.00 .94
\{)

11 .93 .88 .98 ·95 .84 .95 ·92 ·31 ·74 .44 .26 .06 .20 .34
12 ·50 .44 .30 .00 .00 * .25 .65 .40 .13 .45 .00 ·75 .39

Ave. ·70 .69 ·59 .56 .63 .61 .63 .66 .47 .41 .41 ·53
Sub- Cue 3 Cue 4ject

1 .68 .63 ·70 .66 ·52 .54 .62 ·79 .54 ·70 .44 .36 .33 .53
2 .11 .12 .10 .41 .00 .13 .15 .00 .05 .06 .12 .11 .06 .06
3 .52 .44 .39 .14 .18 .20 ·31 ·70 ·51 .22 .13 .09 .17 .30
4 .41 .27 .05 .34 .10 ·32 .25 .29 .23 .18 .18 .22 .30 .23
5 .56 .45 .54 ·38 .46 .35 .46 .38 ·.72 ·35 .10 .20 .03 .30
6 .07 .37 .18 ·33 .09 .00 .17 .03 .06 .00 .18 .00 .05 .05
7 ·57 .22 1.00 .00 * .00 .36 .15 .25 1.00 * * .25 .41
8 .26 .15 .14 .12 .12 .16 .16 .05 .08 .17 .00 .06 ·50 .14
9 ·31 .29 .15 .13 .31 .19 .23 .20 .23 .24 .11 .25 .25 .21

10 .04 .07 .00 .03 .07 .04 .04 .07 .00 .05 .00 .00 .00 .02
11 .15 ·32 .13 .22 .04 .10 .16 .25 .27 .34 .19 .12 .12 .22
12 .14 .25 .40 .42 .29 * .)4 .09 .19 .10 1.00 1.00 .00 .40

Ave. ·32 ·30 ·32 .26 .23 .18 .25 .26 .28 .22 .22 .17



Table A-8
Estimates of g for the Fixed Sample- Size Model

(* indicates ,the bias was indeterminate due to perfect performance).

Group 2

Cue 1 Cue 2

Sub- 1 2 3 4 5 6 Ave. 1 2 3 4 5 6 Ave.
ject

1 .87 ·92 ·57 .96 ·79 ·91 .83 ·76 ·71 ·70 ·74 .77 1.00 ·78
2 .91 .83 ·57 ·73 ·75 .82 ·77 ·71 ·79 .84 .81 .68 .78 ·77
3 .96 .88 .85 .90 1.00 1.00 ·93 ·95 .80 .96 .92 1.00 1.00 .94
4 .21 .00 ·75 .29 ·50 .00 .29 .00 .00 .62 .00 .00 .60 .22
5 ·73 .94 .85 ·90 ·73 .85 .83 ·51 .81 .69 .86 ·75 .83 .74
6 .63 .67 ·77 .65 ·72 .88 ·72 .62 .46 .46 .43 .44 ·73 ·52
7 .64 ·78 .88 .64 .61 .78 ·72 .62 .80 .76 .49 .56 .60 .64
81.00 .81 ·75 .49 .00 .86 .65 ·75 .82 ·95 .90 .89 .88 .87

f-' 9 ·79 ·57 .64 .54 .69 ·75 .66 .45 ·51 .84 .67 .82 .82 .68
f-'
0 10 .76 .85 ·75 .54 .86 1.00 ·79 .00 .68 .75 1.00 .00 * .49

11 .86 ·97 .88 1.00 .86 .85 ·90 .69 .69 .69 .00 .83 .81 .62
12 .21 .20 ·50 .00 .54 .00 .24 .88 ·93 ·75 .00 ·90 ·90 ·73

Ave. ·71 ·70 ·73 .64 .67 ·72 .58 .67 ·75 ·57 .64 .81

Sub- Cue 3 Cue 4
ject

1 .13 .10 .25 .20 .08 .00 .13 .07 .13 .20 .13 .15 .07 .13
2 .06 .09 .41 .12 .11 .28 .18 .18 .19 .17 .07 .09 .10 .13
3 .04 .10 .05 .02 .08 .00 .05 .00 .13 .09 .18 .18 .05 .11
4 1.00 1.00 .10 .05 .25 .00 .40 .25 ·32 .10 .08 .10 .00 .14
5 .12 .05 .22 .09 .05 .00 .09 .03 .20 .05 .10 .07 .11 .09
6 .25 .15 ·30 .64 ·35 .32 .34 .29 .11 .24 .45 .28 .30 .28
7 .21 .25 .15 .25 .06 .16 .18 .18 ·30 .23 .14 .13 ·35 .22
8 .07 .06 .10 .10 1.00 .04 .23 .15 .09 .04 .08 .09 .00 .07
9 .18 .07 .04 .03 .05 .00 .06 .06 .11 .05 .04 .03 .00 .05

10 1.00 .06 .00 .09 .00 .00 .19 .21 .00 .00 .00 * .00 .04
11 .12 .00 .03 .10 .00 .04 .05 .05 .04 .14 .15 .28 .48 .19
12 .05 .10 .10 1.00 .04 * .26 .00 .00 .00 .14 .05 .13 .05

Ave. .27 .17 .15 .22 .17 .08 .12 .13 .11 .13 .13 .13
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