PROBABILISTIC CAUSATION WITHOUT PROBABILITY

ABSTRACT. The failure of Hume's 'constant conjunction' to describe apparently causal relations in science and everyday life has led to various 'probabilistic' theories of causation of which Suppes (1970) is an important example. A formal model that was developed for the analysis of comparative agricultural experiments in the first quarter of this century can be used to give an alternative account of 'probabilistic causality' that does not take a stand as to the stochastic or deterministic nature of the causal connection. The approach has many applications in social, behavioral and medical science. This paper discusses the formal model in detail, applies it to 'probabilistic causation' and compares the resulting theory to Suppes's theory.

...in restricting himself to the concept of constant conjunction, Hume was not fair to the use of causal notions in ordinary language and experience (Suppes 1970, p. 10).

1. INTRODUCTION

As Suppes observes, Hume's condition of constant conjunction may not square well with experience. In practice, the billiard ball analogy is not apt in many cases where causal language seems natural. The use of a medical procedure may often give the intended result, but not always. Cigarette smoking may be associated with an increased risk of lung cancer, but not all smokers get lung cancer and there are victims of lung cancer who never smoked. In many cases in everyday life and in the the less 'exact' sciences, when we use causal language the connection between cause and effect is noisy and uncertain - not at all like the crisp click of one billiard ball striking the next. This state of affairs has led to various theories of probabilistic causation, e.g., (Good, 1961, 1962; Granger, 1969; Suppes, 1970, also reviewed in Skyrms, 1988).

In this paper I show how a formal model developed early in this century by statisticians to provide a detailed analysis of the structure of 'comparative experiments' leads very naturally to a 'probability-free' account of probabilistic causation that is quite different from these other
theories but which can accomplish many of their goals. My intent is to make this material accessible to philosophers of science. Here, I give an uncluttered description of the formal model of experiments in the simplest case and then use it to develop a theory of probabilistic causation in which ‘probability’ plays a limited role. I then compare this approach to Suppes’ probabilistic theory of causality to illustrate their differences.

I believe that the formal model for experiments has many other potential uses in philosophical analyses of causation and related topics. I concentrate on probabilistic causality here because of Suppes’ work on this subject and in the hope that such an introduction might catch the interest of other philosophers of science. Indeed, if the review in Tiles (1992) is an indication of the role that ‘experiments’ currently play in philosophical discussions, then the time may be ripe to introduce a useful formal model into the debates. For discussions of the relation of the formal model to ‘causal modeling’ in the social sciences and to the views of various philosophers see Sobel (1990, 1992).

After covering some basic terminology, I then describe the formal model in some detail before relating it to probabilistic causation and the theory of Suppes.

The modern statistical theory of comparative experiments was developed during the first quarter of this century in response to the needs of agricultural experimentation, and quickly spread to many other disciplines. Key to the failure of older experimental methods was the attempt to take them out of the laboratory and apply them to problems where there is a substantial amount of ‘uncontrollable variation’ in the material being studied (such as the effects of the weather in agricultural field experiments). The new statistical methods deal explicitly with uncontrolled variation, and, thus, breathed new life into experimental research.

Basic Terminology

The three key terms used to describe experiments are *treatments, units,* and *outcomes*. In a comparative experiment each experimental *unit* is exposed to one element of a set of *treatments* and then, some time after this exposure to a treatment, an *outcome* is observed for each unit. Comparative experiments get their name from the fact that they are used to *compare* the outcomes of treatments on units.
For example, in a medical experiment (often called a clinical trial) the units are patients of various types and the treatments are new (and old) drug therapies, or various surgical or other medical procedures (including various combinations of medical procedures). In a medical experiment, there are a variety of outcomes of potential interest, e.g., survival status for five years after the therapy, or degree of improvement in some physical activity or in some measure of health. In an educational experiment, the units might be classrooms of elementary school children (instead of individual students), the treatments could be various educational programs for teaching mathematics to whole classrooms of students, and the outcomes might be classroom averages on tests of performance in certain areas of mathematics. (This example illustrates that the units are part of the definition of the experiment and not inherently individual objects or people).

The process of assigning each unit to one of the treatments is called the assignment process of the experiment. Random assignment employs a randomizing mechanism to assign the treatments to the units. Historically, randomization was not the first assignment process used. Systematic assignment processes were used in the earliest agricultural experiments in which, for example, alternating contiguous plots of land (the units) were given different amounts of fertilizer (the treatments). Random assignment is regarded by many practitioners as a great invention in experimental science when there is uncontrolled variation in the material under study. Some reasons for this are discussed in Section 2.

R. A. Fisher, who made many contributions to the development of modern statistics and especially to the application of randomized comparative experiments in agriculture and biological science, identified three important principles to be observed in the design of any comparative experiment. These are randomization, replication, and blocking. I have already described randomization. Replication means that more than one unit should be exposed to each treatment. (This can involve many technical issues and further discussion of it is beyond the scope of this paper.) In blocking, we use observed information about the units to group them into homogeneous subsets (the blocks) and then assign the treatments to units within each of these blocks. For example, we might group all the men in one block and all the women in another block. In a complete, randomized block design there are as many units in each block as there are treatments under study and each unit within a block is randomly assigned a treatment that is different from those assigned
to any other unit in that block. For example, in comparing the wear on two types of shoe leather, the ‘units’ might be feet and the ‘blocks’ people. A person would then have the two types of shoe leather randomly assigned to his or her left and right soles.

The idea behind blocking is adapted from those branches of experimental science in which it is possible to take seriously the idea of distinct-but-identical samples of experimental material for study (the units). For example, in a chemistry laboratory it is often possible to create samples of chemicals that are very nearly identical in purity, volume, mass, etc. When distinct-but-identical units are available for study, the effects of treatments can be studied easily by assigning the different samples to different treatments.

The idea of distinct-but-identical units arises later in my discussion. The point of mentioning it here is to forewarn the reader that although this notion may be a helpful crutch for thinking about experimentation, and it even has a role to play in modern experimental design through blocking, the idea of distinct-but-identical units has no essential role in the theory discussed here, even though it can be expressed within the model as the special case of ‘unit homogeneity’.

With this dash through the terminology of comparative experiments I now turn to the formal model that is used to describe them. This model is implicit in the earliest work on comparative experiments, described in Fisher (1925). It was first explicitly developed to analyze the behavior of statistical procedures in Neyman’s 1923 doctoral dissertation in Polish, translated and republished posthumously in Neyman (1990), and was first published in English in an influential paper (Neyman, 1935). It is standard material in those books on experimental design that go into the details of ‘permutation’ or ‘randomization’ tests, such as Kempthorne (1952) or Cox (1958). However, in all of these early references it is presented purely as a technical tool and applied only to randomized experiments. Its importance for the analysis of non-experimental studies and to causal inference more generally was first pointed out in Rubin (1974) and was developed extensively in Rubin (1977, 1978). In Holland (1986) I call it ‘Rubin’s model for causal inference’ and emphasize its importance as a general tool for studying the relationship between statistics and causal inference. Here I will call it simply ‘the model for experiments’.
At first glance, the model does not look like the types of things that are usually called 'statistical models'. In particular, at least to begin with, there is no role for probability. This is because this model is intended to be applicable to all types of comparative experiments, even those 'deterministic' cases in which the variation across the units can be well controlled.

We need notation for the three basic elements: units, treatments, and outcomes. The units are indexed by the letter \(i \), i.e., 'unit \(i \)', and \(i \) ranges over a set (or population) of units, \(U \). The treatments are indicated by labels denoted by the letter \(t \), and \(t \) ranges over a (finite) set of possible treatments, \(T \). \(T \) must contain at least two treatments or there is nothing to compare (i.e., 'experiments' with only one treatment are not comparative experiments in the sense used here and might better be called 'measurements' or 'controlled observations'). The case of an infinite number of treatments is possible — e.g., doses of a drug — but is not discussed here. Later, I simplify to the case where \(T \) consists of only two treatments, \(t \) the new treatment, and \(c \) the control treatment.

So far, so good. Now comes the hard part, in the sense that we need to define quantities that do not 'exist' according to some critics of this approach, e.g. Lund (1991).

In a comparative experiment, each unit could be exposed to any one of the treatments in \(T \) and the outcome resulting from that exposure could then be observed. Thus, before setting up notation for the outcome that is actually observed for unit \(i \), I add to \(U \) and \(T \) notation for all the potential outcomes that could be observed for unit \(i \) (also depending on potential exposure to treatment \(t \) in \(T \)). Thus, for every pair \((i, t)\), combining a unit and a treatment, define \(Y_{it} \) as

\[
Y_{it} = \begin{cases}
\text{the outcome that would be observed for unit } i \\
\text{if it were exposed to treatment } t.
\end{cases}
\]

I assume that \(Y_{it} \) is a real number for each combination of \(i \) and \(t \). This is not essential, but it makes things go smoothly and agrees with standard discussions of experimental design. Thus, \(Y \) is a real-valued function defined on the Cartesian product, \(U \times T \).

Statisticians are interested in data, but so far there are no data or at least no notation for them. We need to remedy this. It takes three steps. First, we need notation for the treatment to which unit \(i \) is actually
exposed. This is denoted by \(x_i \),

\[
x_i = \text{the treatment to which unit } i \text{ is exposed in the experiment.}
\]

Formally, \(x \) is a mapping from \(U \) to \(T \). This gives us part of the data.

Next, we need to define the outcome that is actually observed for unit \(i \) in terms of what has been defined so far. We denote the outcome observed for unit \(i \) by \(y_i \) and define \(y_i \) in terms of \(Y_{it} \) and \(x_i \) as follows,

\[
y_i = Y_{ix_i},
\]

so that \(y_i \) is equal to \(Y_{it} \) if and only if \(x_i = t \). Hence, the data that are observed in this comparative experiment are \(\{(y_i, x_i), \text{ for } i \in U\} \). I use the notational device of denoting the observed data, \((y_i, x_i) \), by lower case letters and potential observations, \(Y_{it} \), by upper case letters.

Finally, we need to define the relative effects of the treatments on each unit. These are called the unit-level causal effects, or just the causal effects for short. For unit \(i \), the causal effect on the outcome \(Y \) of treatment \(t_1 \) relative to treatment \(t_2 \) is the difference

\[
Y_{it_1} - Y_{it_2}.
\]

In the earlier statistical literature, the causal effects are called ‘treatment effects’. The term ‘causal effect’ was introduced in Rubin (1974) to emphasize that they are the basic quantities of interest in all problems of causal inference, and I follow his terminology. Thus in terms of this model, causal inference means inferring something about the causal effects.

In summary, the formal model is the quadruple \((U, T, Y, x) \) where \(U \) and \(T \) are (finite) sets, \(Y \) is a real-valued mapping from \(U \times T \) and \(x \) is a mapping from \(U \) to \(T \). The observed response, \(y_i \), is the real-valued mapping from \(U \) defined by (1). The causal effects are the quantities defined in (2) and they are the items of ultimate interest in causal inference.

Having set up this formal model and these definitions, I now mention several important points.

First, because it is impossible to apply two different treatments at the same time to a single unit, it is impossible in principle to observe both \(Y_{it_1} \) and \(Y_{it_2} \). Thus, the unit-level causal effects cannot be directly observed. I call this the Fundamental Problem of Causal Inference
because if we could observe both $Y_{i t_1}$ and $Y_{i t_2}$ for all i, t_1, and t_2 then we would know the relative effects of all the treatments on each unit, that is we could infer everything about the causal effects.

Second, the causal parameters, i.e., the causal effects, are defined independently of the way that the data are collected, i.e., the way that x is constructed. This allows a complete separation between the targets of our inferences (the causal effects) and our ability to make sound inferences about them (the experimental design). This separation is very important and not always made.

Third, it is important to separate the model, (U, T, Y, x), from its application to a real situation. The model is an ideal case. Applying it to a real situation requires identifying the elements of the model with corresponding elements of the real situation. This correspondence may be imperfect in various ways (see points four and five, below). Deductive analysis takes place within the model. To the extent that the correspondence between the model and the real situation is faithful, these deductions can then carry over to the real situation. I give some examples of these deductions in Sections 2, 3 and 4. Criticisms of the model have to do with its logical structure or with the logic of the deductions made from it. Criticisms of an application of the model have to do with the faithfulness of the correspondence between the elements of the model and those of the real situation. It is useful to distinguish between these two types of criticisms.

Fourth, an important assumption, that is implicit in any application of the model to a real situation, goes by a variety of names including ‘non-interfering’ units. When units interfere with each other, the outcome for one unit can depend not only on the treatment that the unit is exposed to, but also on the treatments received by some or all of the other units. For example, if the units are people in a theatre watching a play, the treatments are to stand up or to sit down, and the outcome is the clarity of one’s view of center stage, then the outcome for me depends on what I choose to do (my own self-imposed treatment) but also on what all those in front of me also choose to do (their self-imposed treatments). Interfering economic units are the sine qua non of micro-economic analysis. Interfering units can occur in agricultural experiments when the rain causes runoff of fertilizer from one plot of land to the next. When units interfere with each other, a more complex model is required than the one discussed here, but many of the same ideas are useful in that case, too. This point is discussed more extensively in Rubin (1980,
1986, and 1990b) under the topic he calls the stable-unit-treatment-value assumption, or SUTVA.

Fifth, there are two assumptions about the set T and the actual ‘treatments’ in a real experiment that should be mentioned. The first is that the elements of T are sufficient to distinguish between the treatments that are actually applied in the experiment. This can become a serious issue. For example, if T contains only two elements, say t (the new treatment) and c (the control treatment) and in actual fact there are several versions of t and of c used in the experiment, then classifying them all as either t or c may be misleading. In Neyman (1935), ‘errors of experimental technique’ are discussed in which treatments labeled the same way by elements of T are not really exactly the ‘same’ treatment. This leads to a more complex model than the one discussed here. A second assumption about T is that it is actually possible in the real experiment to expose any unit in U to any treatment in T. This assumption often creates apparent conceptual difficulties in applying this model to non-experimental studies where there is no real control over which units are exposed to which treatments.

Sixth, in medical and other types of studies that involve human subjects, ethical questions arise in which it may be ethically inappropriate to expose some subjects to some of the treatments in T. Some patients might be too sick to undergo surgery, but could undergo some form of drug therapy. Or, a physician may believe that a given patient would benefit more from treatment t than from treatment c. When this happens, the mapping x is restricted. This in turn can restrict the types of conclusions that are possible. The question of ethics in medical research can force a trade-off between the treatments a patient can receive and the type of conclusions that can be reached by the study. It is exacerbated when the physician does not really know which treatment the patient ought to receive (because this requires a solution to the fundamental problem of causal inference) but has strong opinions about the matter anyway. Kadane and Seidenfeld (1990) discuss methods for designing clinical trials that allow some ‘ethical’ restrictions on x.

Finally, and for my purposes here, most importantly, the model assumes nothing about how t acts on i to result in the value Y_{it}. The only assumption made in using the model is that if i were exposed to t, then some value of the outcome, denoted by Y_{it}, would be observed, i.e., we know exactly how to ascertain the value of Y_{it}. The relationship between i, t and Y is that of a mathematical function (i.e., Y is a function
of \(i \) and \(t \)), but without any specification of the form of this functional relationship. This might appear to be a bit unstatistical in the sense that there is no assumption that there is a stochastic component to the relationship between the pair \((i, t)\) and \(Y \), i.e., at this stage \(Y_{it} \) is not represented by a probability distribution and is not a random variable. There are two reasons for this lack of probabilism. The first is that it is unnecessary – \(Y_{it} \) simply denotes a value that would be observed under some conditions of the experiment. It does not need to be thought of as having any sort of random or stochastic element in its generation. In fact, we are entirely agnostic about how the value, \(Y_{it} \), comes about. The second is that probability considerations come later in this development for very specific purposes. We will get to probability, but not yet.

Connections to Causation

At this point it may be helpful to connect this formal model to ordinary causal talk. The treatments, indexed by the elements of \(T \), are the *causes*, and the *effects* are the relative causal effects defined in (2). The effect of a cause is, therefore, always relative to another cause. Outcomes are not effects, but are intermediate to the definition of effects. Sometimes the distinction between outcomes and effects is blurred when the cause is being compared implicitly rather than explicitly to another treatment (e.g., ‘my headache went away because I took an aspirin an hour ago’). I think that the confusion of outcomes with effects is a source of many problems in the analysis of causation.

The ‘mechanisms’ that lead from cause to effect play no role in this discussion and for this reason I argue that this theory is about *measuring the effects of causes* rather than about *identifying the causes of effects* or the *mechanisms that lead from cause to effect*. By taking units, causes and outcomes as the primitive, undefined terms of the model and defining effects and the observed data in terms of them, this approach breaks with the philosophical tradition of taking events as the primitives and attempting to explicate the nature of causation in terms of them.

The notation for the potential observations, \(Y_{it} \), is related to Hume’s conditions of ‘temporal succession’ and of ‘spatial and temporal contiguity’. In indicating that \(Y \) is a function of both \(i \) and \(t \), the unit \(i \) becomes the point of spatial (and, to some extent, temporal) contiguity between \(t \) and \(Y \) – the treatment acts on the unit and the outcome is measured on it as well. Similarly, the notation, \(Y_{it} \), indicates that \(i \) and
t combine in some way to produce the value of Y thus insuring the
temporal succession of the cause, t, and the outcome, Y. The model
for experiments is consistent in many ways with Hume’s classic anal-
ysis of causation, but it does not insist on ‘constant conjunction’ – see
Section 3.

Causal Models versus Experimental Design

In terms of the quadruple (U, T, Y, x), a causal model is any restriction
or assumption that we make about the function Y, whereas, assumptions
about U, T and x are parts of the experimental design. A reoccurring
theme in the development of statistical methods for experiments is
the replacement of causal models (i.e., assumptions) by elements of
experimental design (i.e., actions under the control of the experimenter).
It should be noted that causal models are assumptions that cannot always
be tested directly using the data from the experiment, i.e., $\{(y_i, x_i) \text{ for } i \in U\}$. However, these assumptions allow us to draw conclusions about
Y from the data. This gives us information about the unobserved values
of Y and this information, in turn, can allow us to describe the causal
effects, i.e., allow us to make causal inferences. Two simple causal
models arise often enough that I will discuss them briefly next.

Unit Homogeneity

It is sometimes useful to make the assumption that the value of Y_{it}
does not depend on the unit i, i.e., the units are homogeneous in their
reactions to the various treatments in T. This may be a believable
assumption in those branches of science in which it is possible to prepare
distinct-but-identical units, i.e., ‘identical’ samples of material for study
in the experiment. There is always a pragmatic element in regarding
two distinct things as being ‘identical’. They are not identical in all
respects, but only in some respects. We might be willing to assume
that all electrons are identical, but that is because ‘electrons’ are one
consequence of a long effort to find the fundamental constituents of
matter that are, by definition, identical in some ways. It is wise to
remember just how tentative such notions of ‘identical’ are in the history
of physical science. Certainly when we turn to the social and biological
sciences, the idea of distinct-but-identical units is a much less useful
idea. In these branches of science, units differ in many ways, only some
of which we know about. This is the ‘uncontrolled variation’ mentioned above.

Regardless of its general tenability, if one can assume that the units are *homogeneous* then this assumption may be expressed in terms of Y as:

\[
Y_{it} = Y_t, \quad \text{for all } t \in T.
\]

Under the assumption of unit homogeneity in (3), the fundamental problem of causal inference mentioned earlier is easily avoided. We need only expose unit 1 to treatment t_1, unit 2 to treatment t_2, etc., until we have exhausted all the treatments in T and have, therefore, observed all the values that Y can take on for *any* unit. Once this is done, we can calculate all of the causal effects defined in (2) for any pair of treatments. Unit homogeneity neatly eliminates the fundamental problem of causal inference. It is one reason why the older lab-based experimental methods worked well on material not subject to much uncontrolled variation.

The assumption of unit homogeneity is sometimes disguised under the rubric of *ceteris paribus* or ‘other things being equal’. *Ceteris paribus* is usually invoked for ideal (and unrealizable) experiments in which we vary only the factor whose effect is of interest and somehow hold all other relevant factors fixed. We get back immediately to the notion of distinct-but-identical units here because these other factors are just ways in which the units can be non-identical. The problem is that we cannot ever really know what *all* the relevant factors are in any real experiment, so the best we can do is hold fixed all the factors that we do know about and which we can fix. I argue that in the experiments in which unit homogeneity might hold, it does not really matter that the units ‘appear’ to be identical. The crucial assumption is that the outcomes do not depend on which unit is exposed to which treatment. The apparent similarity of units in terms of their ‘properties’ and ‘other factors’ is *irrelevant* except insofar as it makes *plausible* the assumption of the homogeneity of the outcomes on distinct units, i.e., that Equation (3) holds. In practice, the plausibility (and therefore the utility) of the assumption of unit homogeneity is always a matter of degree and it can rarely be expected to hold exactly. Even when it is only approximately true, it is a powerful inferential device.
Fisher's Null Hypothesis

Suppose we are willing to entertain the hypothesis that none of the treatments have effects. For example, in an early article in which R. A. Fisher set down some principles of design for field experiments in agriculture, Fisher (1926), he makes the following statement about the apparent productive value of treating a given acre of a field with manure:

What reason is there to think that, even if no manure had been applied, the acre which actually received it would not still have given the higher yield? (p. 504)

This type of statement can be translated into another simple causal model known as Fisher's Null Hypothesis:

(4) \[Y_{it} = Y_i, \text{ for all } i \text{ in } U, \]

that is, \(Y_{it} \), does not depend on the treatment, \(t \), in \(T \) that is applied. Note that (4) also avoids the fundamental problem of causal inference in the sense that if (4) were true, then having observed \(Y_{it_1} \) for unit \(i \) and treatment \(t_1 \), we automatically know the value of \(Y_{it} \) for all \(t \) in \(T \). In this case, all the unit-level causal effects defined in (2) are zero. This is why the hypothesis is called ‘null’; the treatments have no effect on any unit. But note that the units may exhibit any amount of ‘uncontrolled variation’ because the \(Y_i \) in (4) may depend, in an arbitrary way, on \(i \).

The purpose of Fisher’s null hypothesis is quite different from the assumption of unit homogeneity even though the two are formally quite similar – compare (3) with (4). Unit homogeneity can be used to estimate unknown causal effects using the data, whereas Fisher’s null hypothesis is that all of these causal effects are a particular known value – namely zero. If the assignment mechanism is of a particular type – randomization – then Fisher’s null hypothesis has consequences for the observed data and we may be able to conclude that these consequences are incompatible with the data. This brings us to the well-known, and very large, subject of testing statistical hypotheses and it would take me too far afield to say more about it here, so I won’t.

Random Assignment

The function \(x \) can be determined in a variety of ways. One very important aspect of comparative experiments is that the determination of \(x \) is under the control of the experimenter; this is what ‘experimental manipulation’ means within this model. If we use appropriately a
randomizing device such as the toss of a coin, the roll of a die, or a table of random numbers to decide which treatment is applied to each unit, then x is said to be constructed by randomization. I do not want to go into the fine points of the many ways that randomization can be used to construct x. My purpose at this point is merely to indicate how randomization fits into the overall model of experimentation described here.

Probability

It is now time to get serious about probability. I use probability in two ways. First, probability has already entered the discussion through the construction of x via randomization. This is, I believe, a fairly insignificant use of probability in this theory, though it has very significant consequences as we shall see. Randomization is a physical act in which a known chance mechanism is used in particular ways to construct the function x. When U is large, this results in an x with certain known properties that I will discuss in more detail in a moment.

Second, and most importantly, I also use the language of probability to describe the population U in terms of x and Y. In particular, I use the notation of expected values and conditional expected values to denote averages of the values of Y over subsets of the units in U. For example, the notation

$$E(Y_i)$$

denotes the average of Y_{it} across all the units in U, and

$$E(y \mid x = t)$$

denotes the average value of y_i among all those units in U for which $x_i = t$ (the units exposed to treatment t). Note that in this expectation notation, I have suppressed the index i because i is being 'averaged over'. The average value of y_i among all those units exposed to treatment c is denoted by $E(y \mid x = c)$. (For simplicity of notation I have just slipped into the two treatment case of a treatment t and a control treatment c that I will continue to use throughout the rest of this paper.)

My use of the expectation notation is, in fact, quite standard because expectations are population averages and I average over the population U. While it does not come up until Section 3, I also use the standard probability notation to refer to the proportions of units in U that are in
subsets of U defined by x and Y in various ways. Thus, the probability that I use here has a simple frequentist interpretation in terms of proportions of units in U. ‘Probability’ in this model is simply another name for ‘unit inhomogeneity’.

Aces and Faces

When unit homogeneity is implausible, the fundamental problem of causal inference must be addressed in other ways and this is the great contribution of the introduction of randomization to the design of comparative experiments.

We begin by changing our target and considering causal parameters other than the basic unit-level causal effects in (2). This leads easily to the idea of an **Average Causal Effect or ACE**. There are several ways to average the unit-level causal effects to get interesting causal parameters. I describe only one of them. Set

$$ (5) \quad ACE = E(Y_t - Y_c \mid x = t). $$

The ACE in (5) is the average of the causal effects of t relative to c across the units exposed to treatment t. It can be thought of as a measure of the ‘effect of the treatment on the treated units’. It is worthwhile to change (5) into a difference of two expectations, i.e.,

$$ (6) \quad ACE = E(Y_t \mid x = t) - E(Y_c \mid x = t). $$

The first expectation in (6) is easy to interpret. It is the average value of Y_t over all the units exposed to t, i.e.,

$$ (7) \quad E(Y_t \mid x = t) = E(y \mid x = t), $$

and the expectation on the right-hand-side of (7) involves only the data $\{(y_i, x_i)\}$ and can, therefore, be computed from them. But, the second expectation in (6) is **counterfactual** in the sense that it is the average of the values of Y_c across all the units exposed to t (and for which the value of Y_c is inherently unknown due to the fundamental problem of causal inference). I have heard the counterfactual expectation, $E(Y_c \mid x = t)$, referred to as an ‘oxymoron’, but I view it as a mathematical formula for the single most important quantity that arises in causal inference. Without introducing it or equivalent notation there is simply no way to describe precisely many important causal parameters that arise in practice.
Before continuing, I will define the FACE or Prima Facie Average Causal Effect that is associated with the experiment:

\[(8) \quad \text{FACE} = E(y \mid x = t) - E(y \mid x = c).\]

The FACE is the average of the observed outcomes for the units exposed to \(t \) minus the average of the observed outcomes for the units exposed to \(c \). It can be put into a form that more closely resembles the ACE by using \(Y \) instead of \(y \):

\[(9) \quad \text{FACE} = E(Y_t \mid x = t) - E(Y_c \mid x = c).\]

Neither of the two expectations in (9) are counterfactual in the sense used above because both of them are based on the data, \(\{(y_i, x_i)\} \). The FACE is a measure of the association of \(y \) and \(x \) across the units in \(U \). It is the ‘correlation’ in ‘correlation is not causation’. The ACE is a causal parameter, because it is determined by the causal effects, and represents the ‘causation’ in the time-honored, correlation/causation distinction.

This brings us to a basic question of causal inference. When does the FACE (which we can always calculate from the data) equal the ACE (which is a causal parameter and which involves an inherently unobservable counterfactual conditional expectation)? Setting (9) equal to (6) yields the following fundamental condition:

\[(10) \quad E(Y_c \mid x = t) = E(Y_c \mid x = c).\]

Equation (10) is a statement of the lack of dependence between the variable \(Y_c \) and the variable \(x \) across the units in \(U \). As such it holds if \(Y_c \) and \(x \) are statistically independent across the units in \(U \). This brings us back to the process of constructing \(x \) using randomization.

A variety of theorems in probability theory have the following form: if \(U \) is countably infinite and \(x \) is constructed by randomization (including, but not restricted to, simple coin flipping) then \(x \) is independent of \(Y_c \) across the units in \(U \), for almost all realizations of the randomizing process. This means that when \(U \) is a large, but finite, population, randomization insures that (10) is approximately true no matter how \(Y_c \) varies across the units, and the larger \(U \) is, the more exactly this approximation holds. This fits well with the practitioner’s intuition that randomization has the greatest force when the number of units being randomized to treatments is large. The practical matter of how close the approximation holds is solved by the usual statistical tools of standard
errors, etc., and is an important, but merely technical, detail from the point of view described here.

The effect of randomization can be described in a slightly different but related way. Table I displays a simple hypothetical example of the model in the case where Y is dichotomous (e.g., 1 = the unit lived, 0 = the unit died) and there are only two treatments, t and c. Table I lists a few of the units of U and their corresponding values for all the quantities that arise in the model. Unit 1 lives ($Y_{tt} = 1$) if it is exposed to t but dies ($Y_{tc} = 0$) if it is exposed instead to c. However, for unit 1 $x_1 = t$ and, therefore, unit 1 is observed to live, i.e., $y_1 = 1$. Similarly for the other units listed in Table I.

Randomization can be thought of as producing two simultaneous random samples, one from the Y_t column and one from the Y_c column in Table I. From this perspective, the average y-value for the units exposed to c is an estimate of the column average of the Y_c column in Table I (i.e., $E(Y_c)$). However, randomization also makes the (unobserved) Y_c values of the units exposed to t a random sample from the Y_c column of Table I and hence their average value (i.e., the counterfactual expectation in (6)) also estimates the average of the entire Y_c column of Table I. From this point of view, Equation (10) is approximately true under randomization.
because both sides are estimates of the same quantity, i.e., $E(Y_c)$, and these estimates become more accurate the larger U is.

Thus, randomization is a powerful technique. When the number of units in the study is large, it makes an inherently unobservable causal parameter (the ACE) approximately equal to a quantity that is easy and natural to compute from the observed data (the FACE). Under randomization, Equation (10) holds approximately so that ‘correlation’ and ‘causation’ essentially become one.

Note also that the use of randomization to estimate the ACE does not depend on assumptions about any causal model for Y (as unit homogeneity does). To reiterate a statement made earlier, one of the contributions of statistical methods for making causal inferences in experiments is to replace untestable causal models (such as unit homogeneity) by features of the experimental design (such as randomization) that are under the control of the experimenter. This is not done without cost, of course. The cost is that we are no longer making inferences about the individual unit-level causal effects in (2). The inferences are now about the ACE’s which are averages of the unit-level causal effects.

Averages have both strengths and weaknesses. Their biggest weakness is that an average by itself says little about the individual values that make it up. The patient and his or her physician are interested in the patient’s own causal effect, but a research study will often result in information about the ACE of which the patient’s causal effect forms only a tiny part. For many problems, however, averages are very useful.

In public health, the ACE is often the main causal parameter of interest.

I argue that unit homogeneity (for simple ‘deterministic’ phenomena) and randomization (for phenomena exhibiting uncontrolled variation) are the twin inferential pillars of experimental science because, in different ways, each can be used to solve the fundamental problem of causal inference. Neither is guaranteed to succeed, of course – unit homogeneity may not be plausible in many situations, randomization is impossible to implement in many studies, and the ACE may not be a relevant parameter in some cases.

Non-Experimental Studies

‘Observational studies’ or ‘non-experimental studies’ are statistical terms-of-art describing research where the goal is to estimate the causal effects of treatments but for which unit homogeneity is implausible
and randomization is infeasible. The active experimenter is replaced by the passive observer who tries to draw causal conclusions without having much control over the data generation process and in the face of significant unit inhomogeneity. For example, a causal finding based exclusively on non-experimental research is the link between cigarette smoking and lung cancer.

Detailed discussion of these important types of studies goes beyond the scope of this paper. I simply make a few points about them here, and refer the interested reader to the references mentioned at the end of Section 4 for more details.

First, for reasons that have never been clear to me, many of the examples used in philosophical discussions of causation and related topics are based on observational-study-like examples rather than on comparative experiments. It seems to me that giving an account of causation in the context of an experiment where, in practice, there is confidence in the conclusions is logically prior to attempting to discuss causation in more complex situations where, again in practice, there is always less confidence in the conclusions. That is why I have emphasized experiments in this discussion.

Second, in observational studies, the identification of the units and the outcomes is usually unambiguous. However, it is sometimes difficult to determine what treatment was applied to each unit and whether or not they were applied prior to the determination of the outcomes (in which case Hume’s ‘temporal succession’ becomes a non-trivial issue).

Third, the fundamental problem of causal inference and the consequent a priori potential inequality between the ACE and the FACE poses a major problem for observational studies. In general, in an observational study there is no assurance that Equation (10) holds. To proceed with the analyses, one must make assumptions that are closely related to Equation (10) but without any real basis for these assumption in the design of the study (such as provided by randomization). An example of such an assumption is ‘strong ignorability’ discussed in Rosenbaum (1984a). All is not hopeless, of course, but the measurement of causal effects in non-experimental studies always has an additional level of uncertainty in it beyond that determined by sample size. This additional uncertainty is due to our natural lack of conviction in the validity of untested and often untestable assumptions about the assignment of units to treatments. A key tool in the analysis of observational studies is ‘sensitivity analysis’ in which we express this additional uncertainty by
recomputing estimates of the causal effects under a plausible variety of untestable alternatives to Equation (10).

Finally, in an observational study, the question of 'what can be a cause' arises. In an experiment, the causes are the treatments. In observational studies the notion of an experimental manipulation can become confusing. Consequently, estimates of 'causal effects' are sometimes sought in cases where there is ambiguity in what they mean, e.g., the 'causal effect' of gender on test performance, or the effect of 'nature' versus that of 'nurture'.

3. PROBABILISTIC CAUSATION

The whole purpose of the formal model for comparative experiments is to accommodate 'uncontrollable variation', so it should be no surprise to find that it also gives rise to a type of probabilistic theory of causality that addresses many of the same issues that concern Suppes. I first describe this theory and then discuss its relation to Suppes' work.

Probabilistic Causation without Probability

To make things simple, let us assume that Y is a 0/1 variable so that we can talk about events occurring or not in terms of the values of Y. For example, suppose the units are patients in a medical study and $Y = 0$ denotes death within some specific future time period while $Y = 1$ denotes survival over this time period. Suppose further that we have two treatments, t and c, with t denoting a new treatment and c a control treatment, either of which can be applied to each patient.

We can conceive of grouping the units in U into four sets depending on the joint values of Y_t and Y_c: we cannot actually form these groups in practice, of course, due to the fundamental problem of causal inference, but it is useful to discuss them. The four subsets of U are

$$A_{11} = \{i : Y_{it} = 1 \text{ and } Y_{ic} = 1\},$$
$$A_{10} = \{i : Y_{it} = 1 \text{ and } Y_{ic} = 0\},$$
$$A_{01} = \{i : Y_{it} = 0 \text{ and } Y_{ic} = 1\},$$
$$A_{00} = \{i : Y_{it} = 0 \text{ and } Y_{ic} = 0\}.$$

Then let $P(1, 1)$, $P(1, 0)$, $P(0, 1)$ and $P(0, 0)$ denote the proportions of units that are in these four subsets of U. These four proportions
(i.e., probabilities) can be described as follows:

\[P(1, 1) = \text{the probability that a patient lives throughout the period no matter which of the two treatments he or she receives,} \]

\[P(0, 0) = \text{the probability that a patient dies within the period no matter which of the two treatments he or she receives,} \]

\[P(1, 0) = \text{the probability that the new treatment causes a patient to live during the period,} \]

\[P(0, 1) = \text{the probability that the new treatment causes a patient to die during the period.} \]

The last two 'causal' probabilities address constant conjunction in a sense that is quite compatible with Hume's intent. For example, if

\[P(1, 0) = 1, \]

then the presence of the cause \(t \) is always followed by survival, and the absence of the cause \(t \) is never followed by survival. Non-constant conjunction or 'probabilistic causality' occurs when either \(P(1, 0) \) or \(P(0, 1) \) is strictly between 0 and 1. In other words, in terms of this model, probabilistic causality is identical to unit inhomogeneity and the rejection of Fisher's null hypothesis. Thus, the model for experiments makes it easy to talk about probabilistic causality. The only price we pay for this is that we must refer to sets such as \(A_{10} \) that can never be formed in practice. This is closely related to the counterfactual language that has been used to describe the causal relation, for example Lewis (1973).

This price may be too large for an extreme positivist, but it is interesting to observe that a combination of randomization and a causal model can allow us, in certain circumstances, to draw plausible inferences about these four sets that we cannot actually form in practice. Here is how this analysis goes.

'Observing' the Unobservable

First of all, it is useful to express the joint distribution of \(Y_t \) and \(Y_c \) (over \(U \)) as a two-by-two table, as in Table II.

The idea is that if \(U \) is large, then under randomization we can estimate the values of the margins of this joint distribution, i.e., \(\text{Prob}\{ Y_t = \)
TABLE II

The joint distribution of Y_t and Y_c.

<table>
<thead>
<tr>
<th></th>
<th>Y_c</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>Total</td>
</tr>
<tr>
<td>Y_t</td>
<td>$P(1,1)$</td>
<td>$P(1,0)$</td>
<td>$\text{Prob}{Y_t = 1}$</td>
</tr>
<tr>
<td>0</td>
<td>$P(0,1)$</td>
<td>$P(0,0)$</td>
<td>$\text{Prob}{Y_t = 0}$</td>
</tr>
<tr>
<td>Total</td>
<td>$\text{Prob}{Y_c = 1}$</td>
<td>$\text{Prob}{Y_c = 0}$</td>
<td>1.0</td>
</tr>
</tbody>
</table>

and $\text{Prob}\{Y_c = 1\}$, and then we use a causal model to allow us to infer the values of the ‘insides’ of this two-by-two table (i.e., the $P(i,j)$ $i,j = 0, 1$) from its margins.

The discussion in Section 2 shows that we can use the FACE to estimate the ACE defined in (5). However, under randomization x is approximately independent of both Y_t and Y_c across U, so it follows that we can drop the x in the conditioning part of the definition of the ACE and hence,

(11) $ACE = E(Y_t) - E(Y_c)$.

However, because Y is a 0/1 variable, we have the following basic fact from Table II:

(12) $E(Y_t) = \text{Prob}\{Y_t = 1\} = P(1,1) + P(1,0),$

and

(13) $E(Y_c) = \text{Prob}\{Y_c = 1\} = P(1,1) + P(0,1)$.

Hence, combining (11), (12) and (13) we can express the ACE in terms of the ‘causal’ probabilities $P(1,0)$ and $P(0,1)$, i.e.,

(14) $ACE = P(1,0) - P(0,1)$.

Equation (14) is the contribution of randomization to the analysis.

Now suppose that from some $a priori$ consideration it is plausible that the treatment $does not cause death$ in the sense that we regard it
as impossible for exposure to t to lead to death but exposure to c not to, i.e., $Y_{it} = 0$ but $Y_{ic} = 1$. This might be a plausible assumption if t were an improved version of c or if c involves a hazard that could lead to death and t does not involve this hazard. In Table I, this assumption would eliminate such units as unit 5. The assumption can be formulated in the model as

$$P(0, 1) = 0.$$ \hspace{1cm} (15)

Equation (15) is the contribution of the causal model to the analysis. From (14) and (15) we have

$$ACE = P(1, 0).$$ \hspace{1cm} (16)

Therefore, if we assume that the causal model (15) holds and include random assignment in the experiment’s design, then the FACE is an estimate of the ACE and, therefore, of $P(1, 0)$. Thus, while we cannot actually form the set A_{10} we can still learn about its frequency in the population U, (a) using a causal model that may be plausible from other considerations, and (b) including randomization in the experimental design. We can then find all four of the P’s in Table II.

Finally, I should emphasize that the probability, $P(1, 0)$, that t causes survival should not be confused with the probability involved in some stochastic mechanism that might connect t to survival. Such a mechanism might or might not be the reason why $P(1, 0)$ does not equal unity, i.e., why there is unit inhomogeneity. (Indeed, a stochastic mechanism might be proposed to account for the value of $P(1, 0)$ in some population, U.) This analysis and the model on which it is based is entirely silent about that possibility. All of the ‘probability’ in this analysis arises from unit inhomogeneity. The source of unit inhomogeneity may be an underlying stochastic mechanism ‘within’ each unit (stochastic units), or it may be deterministic differences between the units that are not reflected in the data that has been collected about them prior to their exposure to the treatments. Again, I argue that this agnosticism about stochastic versus deterministic sources of unit inhomogeneity is irrelevant to this theory because it is about measuring the effects of causes and not about identifying causes or the mechanisms that lead from cause to effect.
Suppes’s Theory of Probabilistic Causation

Suppes intends his theory to accommodate the possible lack of constant conjunction of cause and effect while retaining temporal succession from Hume’s analysis of causation. As far as I can tell, spatial and temporal contiguity play no direct role in Suppes’s analysis.

Roughly speaking, Suppes proposes that one event is the cause of another that occurs later in time if the occurrence of the first event increases the probability of the occurrence of the second, and there is no third, temporally prior, event that we can use to ‘factor out’ this ‘probabilistic association’ between the first and second events.

Suppes’s theory is much more general than the one described above. He uses the language of probability theory for events that occur in time (stochastic processes) but is not specific about the probability space or the nature of the events beyond their temporal order of occurrence. The essence of his theory is to identify when one event is a genuine (probabilistic) cause of another. His three basic definitions of prima facie, spurious and genuine causes are given in S_1, S_2, and S_3.

(S_1) If $r < s$ denote two time values, the event C_r is a prima facie cause of the event E_s if

$$\text{Prob}\{E_s \mid C_r\} > \text{Prob}\{E_s\}.$$

(S_2) C_r is a spurious cause of E_s if C_r is a prima facie cause of E_s and for some $q < r < s$ there is an event D_q such that

(a) $\text{Prob}\{E_s \mid C_r, D_q\} = \text{Prob}\{E_s \mid D_q\}$, and

(b) $\text{Prob}\{E_s \mid C_r, D_q\} \geq \text{Prob}\{E_s \mid C_r\}$.

(S_3) C_r is a genuine cause of E_s if C_r is a prima facie cause of E_s, but C_r is not a spurious cause of E_s.

Condition S_1 says that given that the causal event has occurred, the probability that the effect will occur is higher than it would be had the causal event not occurred. A prima facie cause exhibits a positive probabilistic association with the effect.

Condition S_2 is what Suppes means by a temporally prior event ‘factoring out’ the association between a prima facie cause and the effect. Part (a) of the condition is the conditional independence of the prima facie cause and the effect given the other event. This is also
called ‘screening off’ (D_q screens off C_r from E_s). Part (b) requires the screening-off event to increase the probability of the effect beyond the value attained by conditioning on the occurrence of the original prima facie cause alone, i.e., given the occurrence of the prima facie cause, the screening-off event must act like a prima facie cause itself.

Condition S_3 says that if a prima facie cause is not spurious in the sense of S_2, then it can be elevated to the status of a genuine cause.

The crucial part of these definitions is part (a) of the definition of a spurious cause. It also appears in many probabilistic analyses in the philosophy of science, e.g., Salmon’s definition of statistically irrelevant explanations (Salmon 1989). For other references to similar uses of ‘screening off’ see Skyrms (1988). Part (b) is more problematic and may not be important. In Holland (1986), I give some evidence that it may be inessential to the notion of cause. Suppes’s conditions S_1 and S_2 (b) both concern positive association between causes and effects. For the most part, positive versus negative association is an inessential artifact of the labeling of outcomes and treatments.

There is a certain unattainable quality to Suppes’s definition of a genuine cause. In order to show that a cause is genuine, we need to be able to show that there is no event D_q that satisfies the condition S_2. In practice there could be an infinite number of potential D_q’s, and ruling them all out might be impossible. See Good (1962) for a different criticism of the use of screening-off events in definitions of probabilistic causality. For a criticism of Suppes’s theory see Otte (1981).

4. A COMPARISON OF THE TWO THEORIES

I must admit that I stole the ‘prima facie’ in *prima facie average causal effect* (FACE) from Suppes’s definition of *prima facie cause* because I believe they represent closely related ideas. Both are surface appearances. The FACE measures the empirical association between treatments and outcomes. If the FACE is positive in the medical example given earlier, then t is a prima facie cause of survival in Suppes’s sense.

Except for this, the two theories diverge widely because, I argue, the experimental model focuses on the measurement of effects, while Suppes’s theory follows the ancient tradition in philosophy of defining what it means to be a cause of something.
Differences in the Permanence of Results

The problem of the unattainability of the status of being a genuine cause is a difficulty inherent in the approach of identifying causes rather than of measuring effects. For example, it also appears in a different guise in the econometric notion of Granger causality, (Granger, 1969; Florens and Mouchart, 1985), in which conditions are given to define when one variable is the cause of another. Granger causality is an approach similar to that taken by Suppes. Granger and others attempt to get around the problem of unattainability by assuming that the set of all the possible D_q's is limited by available information so that it can be exhaustively searched. The status of being a genuine cause now ceases to be unattainable and becomes merely provisional. A genuine cause can be reduced to a mere spurious cause by new data (i.e., a newly discovered D_q).

In practice the identification of a cause often has a provisional quality about it. ‘A is a cause of B’ is often simply a theoretical statement used to summarize the current state of our ignorance. On the other hand, ‘B is an effect of A’ can be an empirical finding that does not change or become false as knowledge of the subject increases. As I am fond of saying,

old experiments never die, they are just reinterpreted.

I intend this paraphrase to emphasize the permanence that experimental results often have, in comparison to that of proposed causal mechanisms. Of course, the status of old experimental results can change in the light of new experimental findings. For example, the introduction of single and double ‘blindness’ into experiments on human subjects had a profound effect on the interpretation of previous research on the treatment of pain in medicine (Beecher, 1966).

In non-experimental research the aim is often to measure causal effects with the recognition that because randomization is infeasible and unit homogeneity is implausible the measurement of an ACE by a $FACE$ is biased. In this type of research, older (more biased) estimates of an ACE are replaced by newer (less biased) ones as the quality of the non-experimental research improves. While it might be argued that this is a lack of permanence in the measurement of the effect of a cause, I argue that it is more appropriate to view it as an improvement in this measurement; an improvement that is necessary only because
of the infeasibility of a randomized experiment that would make it unnecessary.

Differences in the Use of Probability

Another important difference between the theories is the way in which they use the language of probability. This is possibly best seen in the analysis of probabilistic causation in the case of a single unit, say the patient Jones. In this special case, the ‘events’ in Suppes’s theory all describe various aspects of Jones and the things that happen to her. The probability that is invoked in his theory refers to Jones alone and not to some population to which Jones might belong. Jones is viewed as a stochastic being, her survival being only probabilistically related to her exposure to the treatment \(t \).

The situation described by the model for experiments is very different. Suppose that Jones is unit 1, then there are just the values of \(Y_{1t}, Y_{1c}, \text{ and } x_1 \). There is nothing said about Jones being stochastic or not. Under exposure to \(t \) the outcome \(Y_{1t} \) would be recorded, under exposure to \(c \) the outcome \(Y_{1c} \) would be recorded, and \(x_1 \) is whatever it is. We may introduce probabilities for Jones by considering various subpopulations of \(U \) to which Jones belongs. For example, suppose that Jones was exposed to \(t \) and survived. Can we say anything about the probability that Jones actually survived because she got treatment \(t \) in the experiment? Under some circumstances the answer is yes, as I now demonstrate.

Continuing the medical example from Section 3, suppose that from a large randomized experiment comparing \(t \) to \(c \) we have established that

\[
\text{Prob}\{Y_t = 1\} = 0.4 \quad \text{and} \quad \text{Prob}\{Y_c = 1\} = 0.1
\]

using the methods mentioned in Section 3. The \(ACE \) is then equal to \(0.4 - 0.1 = 0.3 \).

Suppose, as before, that we are willing to assume that \(P(0, 1) = 0 \). We can then interpret the \(ACE \) as \(P(1, 0) \) and conclude that \(t \) causes 30\% of the units in \(U \) to survive, i.e., that the set \(A_{10} \) contains 30\% of \(U \), including Jones. We know a bit more about Jones, namely, that she was exposed to \(t \) and she survived. That is, we know that she is in the first row of Table II. She could be in either \(A_{11} \), the patients who survive regardless of exposure to \(t \) or to \(c \), or in \(A_{10} \), those patients
for whom \(t \) causes survival. Hence, we might consider answering the question ‘Did \(t \) cause Jones to survive?’ by reporting the conditional probability formed by dividing \(P(1, 0) \) by the sum of it and \(P(1, 1) \), i.e., dividing by \(\text{Prob}\{Y_t = 1\} \). The answer will then depend not only on the value estimated for \(P(1, 0) \), but also on the experimental estimate of the marginal probability, \(\text{Prob}\{Y_t = 1\} \). In this example,

\[
\text{Prob}\{Y_t = 1\} = 0.4.
\]

Hence, given that Jones got treatment \(t \) and survived (i.e., that she is in the first row of Table II), the probability that Jones survived because she got treatment \(t \) (i.e., that she is also in the second column of Table II) is 0.3 divided by 0.4 or 75%. If another patient, say Smith, received treatment \(c \) and died, the corresponding probability that Smith died because she received treatment \(c \) is \(0.3/0.9 = 33\% \).

This is unit inhomogeneity and probabilistic causality in all their glory, because, while we can say something about individual cases, we typically obtain conditional probability statements whose probabilities are far away from 1 or 0.

The Relative Risk

It is useful here to point out an interesting connection between the conditional probability just computed and a ‘causal’ parameter that appears in biometric studies called the *relative risk*. The relative risk is the ratio of the probability of the outcome under \(t \) to the probability of the outcome under \(c \), i.e.,

\[
R = \frac{\text{Prob}\{Y_t = 1\}}{\text{Prob}\{Y_c = 1\}}.
\]

(In biometric applications, the outcome coded ‘1’ is usually *death* rather than *survival*, as used here; hence the term ‘risk’ in ‘relative risk’.) The relative risk is the parameter used in statements such as ‘smokers are 10 times more likely to die of lung cancer than are non-smokers’.

If \(R > 1 \) then, following the calculations made above, it is easy to show that the conditional probability that \(t \) causes survival among the surviving units exposed to \(t \) is \((R - 1)/R\). (Note that I am still assuming that \(P(1, 0) = 0 \).) Hence, for a small relative risk, say \(R = 1.01 \), this conditional probability is also small, i.e., 1%. When the relative risk is big, say \(R = 10 \), then this conditional probability is also big, i.e., 90%. In the above example, \(R = 0.4/0.1 = 4 \) and \((R - 1)/R = 3/4 = 75\% \).
Differences in the Role of Null Effects

A third difference between the model for experiments and Suppes's theory is the use of 'screening off'. For Suppes screening off plays an important role in determining when there is only a spurious statistical association between 'cause' and 'effect'. The model for experiments does not involve the use of probability in this way. Instead, to describe *everything causal* it uses functional relationships – the function Y that associates a value with each pair (i, t) and the mapping x that describes the assignment of treatments to units. Probabilities are proportions of units in the studied population and nothing more. I formed a conditional probability in discussing the probability that t caused Jones’s survival, but this is not a fundamental aspect of the model, only a natural consequence of using it. Indeed, I think that the strength of the model for experiments is its * simultaneous * use of functional relationships and of unambiguous population frequencies as probabilities to express all the items of interest. The language is richer than that of probability alone, and more can be said using it.

The role of 'no relationship' or 'spuriousness', while fundamental to Suppes's theory, appears in the model of experiments in a fairly minor role, as Fisher's null hypothesis. The null value, zero, is only one of many possibilities, no one of which plays a dominant role in this theory. Again, this difference can be attributed to the differing goals of the two theories. When measuring the effects of causes, null effects are only special cases in the range of all possible effect sizes. On the other hand, identifying a genuine cause means being sure that its apparent association with the effect cannot be explained away by any other temporally prior event.

In Summary

The 'probability-free' account of probabilistic causation has many of the same aims as other such theories, and it can accomplish much of what these other theories do. It is only one application of the general model for experiments described in Section 2 and it illustrates that remaining uncommitted as to the nature of the causal connection does not mean that a detailed analysis of many causal questions is out of reach. It is characterized by a focus on measuring the effects of causes and by formal notation that uses the language of both functional relationships and frequentist probability.
The following references may be of interest to those who want more information about the model for experiments and its application to a variety of problems in causal inference.

ACKNOWLEDGMENTS

This paper was prepared while the author was a Fellow at the Center for Advanced Study in the Behavioral Sciences and was supported by the Spencer Foundation and Educational Testing Service. I would like to thank my fellow Fellows at the Center, Geoffrey Garrett, William Lycan, and especially Richard Watson for very helpful comments on earlier drafts of the manuscript. In addition, Vance Berger, Michael Sobel and Howard Wainer made several helpful suggestions. Of course, I am responsible for any foolishness that remains.

I first became aware that the model for experiments described in Section 2 gave rise to a probabilistic theory of causation in 1987 at Flinders University, through conversations with Professor John Darroch.

Educational Testing Service.

Permanent address:
Graduate School of Education, EP,
4511 Tolman Hall,
University of California,
Berkeley, CA 94720,
U.S.A.
REFERENCES

PROBABILISTIC CAUSATION WITHOUT PROBABILITY

I have been discussing problems of causation with Paul Holland for more than two decades. The exposition in his paper is a model of clarity, and he is right to emphasize that the classic comparative experimental design with randomization, due in concept above all to Fisher, has been unduly neglected by philosophers in their discussions of causality. I need not agree with everything he has to say to applaud and thoroughly concur in the general thrust of his argument.

My recognition that my own extended discussion of causality in my 1970 monograph needs to be augmented by a theory of experiments is laid out in my response to Maria Carla Galavotti. What I say there in a general way is relevant to what I want to say here, but I shall concentrate on several detailed questions that are provoked by Paul’s detailed discussion. The first two of my rather wide-ranging remarks are the most important.

The Bayesian Alternative. Keeping within Holland’s general theory of comparative experimentation, so applicable as he points out in medicine and agriculture, one can still provide a Bayesian version to replace the frequentist approach that he uses. To make this point concrete, consider the discussion of patient Jones in Section 4. What Paul is struggling with is what has been labelled as a problem of dealing with single case probabilities for those who advocate a frequentist interpretation. For a Bayesian, what can be inferred from the contingency table data of the experiment would only be part of the computation of the probability that Jones actually survived because she got treatment t in the experiment. What would enter for a beginning would be the Bayesian prior as a way of summarizing information about Jones. Moreover, if we decided to be skeptical about Jones’s survival being due to the treatment t, we could *a posteriori* look further into her medical history and in the process might well discover some new information that we would use to compute still a new posterior distribution concerning the cause of her survival.

My main point is not to argue about the virtues of the Bayesian alternative, but rather to point out that Holland’s general comparative experimental setup is also one that Bayesians can use. What is important in practice is the general design of the experiment, not the decision to give a Bayesian interpretation. I want to mention this point because I think emphasis on the role of the comparative experiment is important.
enough to make sure it is clearly understood that it does not at all need to be accompanied by a frequentist interpretation of probability.

Varieties of Formal Models for Experiments. A somewhat unfortunate rhetorical aspect of Paul's article is that the model of comparative experimentation he sets forth so well in a number of places is described as "the formal model for experiments" (emphasis mine). I am sure he does not really believe this, and it is an unfortunate move for those unacquainted with the ins and outs of these matters. As I have emphasized elsewhere, at least as important, and for science in general more important, is the model of experiments set up in a probabilistic way to test a particular scientific theory. In many such cases in physics, psychology and elsewhere the comparative experiment with treatment and control units is not the proper model for the scientific test of the theory. As Holland himself remarks, we do not usually have such experiments in physics with two classes of electrons, those that are given a treatment and those that are given the control condition. But this is also true of much systematic experimentation in psychology when that experimentation is in relation to a specific mathematical or theoretical model of the phenomena in question.

As I have pointed out on several occasions, what often happens in these cases is that the different treatments are replaced by different mathematical models and each of the models is tested on the same experimental data. What is examined and thought about from a statistical viewpoint most carefully is which mathematical model best fits the data, with due allowance being made for the number of free parameters in each model. What is important to notice here is that we are not really interested in rejecting the null hypothesis, as Fisher was, in order to affirm that a particular treatment had a definite causal effect, but rather in affirming the null hypothesis, namely, that at least one of the models considered accounts for the data within the probabilistic expectations of the model.

It is also important to note that in this test of one or more theoretical models, randomization also enters in order to eliminate biases in the data that are in no sense analyzed in the theoretical model. A typical example would be randomization between left and right when experimental subjects are to make choices of the smaller object, the brighter object, the rounder object, etc. It would for obvious reasons be considered bad experimental design to make the larger object, the rounder object, etc.,
always appear on either the left side or the right side of the experimental display.

It is also important to emphasize that much standard statistical apparatus, shared in common with the typical comparative experiment for which there is no underlying theoretical model, is also used by the model testing a definite theoretical model. There are of course differences in the use of statistical analysis. It is, for example, much more important often to have a good method of estimating parameters when a variety of theoretical models is being tested than it is in the case of comparative experiments. It should also be noted that in physics much of the statistical analysis that goes with standard experimentation falls under the heading of the classical analysis of errors and not under the more general statistical mantle of testing hypotheses or models. But it still remains the case that almost all physics relies upon some sorts of statistical analysis to analyze the relation between theory and experiment. Most of these classical physical experiments, if they must be classified between the two kinds of models discussed here, surely do lie on the side of theoretical models of experiments, not on Holland's side of comparative experiments.

Genuine Causes. Partly I think because Holland has a kind of *idée fixe* about the frequentist interpretation of probability, he does not recognize the actual plurality of probability widely occurring in scientific practice. In my 1970 causality monograph I tried to canvas the varieties readily encountered: frequentist interpretation, subjective Bayesian interpretation, and theoretical interpretation. By the last I mean that when a probability measure occurs in a theory, there is not necessarily any attempt to provide a specific interpretation for the meaning of probability as it occurs in the theory. This, it seems to me, is what is usually the case in practice in most stochastic theories of behavior, either in the natural or social sciences. When we accept this rather neutral theoretical viewpoint, then of course we can come to definitive conclusions about genuine causes relative to a given theory. There is nothing within the theory that makes the analysis of genuine causes provisional. The provisionality of the inference to genuine causes is only relative to the whole theory itself. It is also obvious that in many classical scientific theories we have a clear and immediate intuitive view of the genuine causes postulated by that theory. This does not mean that we have a metaphysical view that the genuine causes postulated by the theory are
necessarily to be accepted as such without any provisional status open to modification by further theoretical or experimental developments.

Because I have also emphasized that there are not any ultimate causes simpliciter, it is also apparent that we can discuss relative to a given theory ultimate causes and in many cases it may well be useful to do so. Metaphysical views about such matters sometimes get in the way of properly relativizing our causal claims to particular well-established theories, but my point is really that the skeptical claim that there can be no ultimate causes can be modulated by recognizing that there can be clean and crisp claims about ultimate causes relative to a particular theory. The same goes for genuine causes, as well as spurious ones.

On the other hand, it is important to recognize that in such areas as medicine, it is uncommon to have a thoroughly developed theory in which it is feasible to talk about genuine causes. Mainly we are faced with programs of experimentation, highly empirical in nature, that have as one of their main sophisticated aspects the design of experiments to guard against mistaken inferences.

Measuring Effects. Holland’s claim that his approach is one of measuring effects rather than identifying causes, is to my mind almost entirely *a façon de parler*. There is little point in costly experimentation on alternative medical treatments if we can only measure effects but not make a provisional identification of causes from the experiment, for what we want for the purposes of further use is the provisional identification of causes in order to provide causally efficacious treatments of patients. This does not mean that we can claim that we have a genuine or ultimate identification of causes. That can be done in any final sense, as I would claim, only relative to a particular theory and even in some cases relative to a particular model of a particular theory. There is in Paul’s verbal usage this lingering reluctance of statisticians to accept the fact that almost all experimentation in science is for the purpose of identifying causes in some provisional way, and of course we can enlarge upon the phrase ‘identifying causes’ to ‘measuring the effects of causes’, but there really is not a separation of any importance here. We could in fact use the long and more awkward phrase, ‘the aim of most experimentation is to identify causes and measure their effects’. In some cases we might want to claim that the identification is easy but measuring the effects is difficult. In other cases it may be that we think identifying the causes is hard but measuring the effects is easy once
the identification is made. The point is that from a broad perspective the search for causes and the measurement of their effects is a seamless enterprise moving back and forth between closely related questions. The absence of a causal language in much experimentation in the social sciences is due to a positivistic tradition that began very early in this century, if not earlier, and is only slowly dying out.

Counterfactuals. Paul properly emphasizes the place where counterfactuals enter and the theory of experiments with treatments and control units begins. What I want to emphasize is that they enter *en masse* whenever we have a probability space. Thus, especially in the theoretical case where the probability space may be huge, if we were really careful in our language when we talk about conditional probabilities we could use counterfactual language. Such and such would have a probability if it were the case that such and such were so. In fact, this use of the subjunctive is gradually fading and is not present now in much scientific discussion of these matters. Although the shoe seems to pinch more in many direct empirical cases, I do not see in principle any difference between such cases and the use of counterfactuals in theoretical contexts, since most of the conditionals introduced will not be realized. What I do think is that no special logic of counterfactuals is needed for either empirical or theoretical purposes. I hope, but I am not quite sure that Paul agrees with me on this point.

REFERENCE