Using the Scalp Electric Field to Recognize EEG Signals

C. G. Carvalhaes, M. Perrau-Guimaraes, J. A. de Barros, P. Suppes

CSLI, Suppes Brain Lab Stanford, CA

March 10th, 2012

EEG signals

Millisecond-range temporal resolution

Analysis techniques:

- Fourier analysis
- Coherence analysis
- Classification

Experimental issues

- Reference electrode
- Low signal-to-noise ratio
- Poor spatial resolution

Sources of EEG

- Synaptic potentials are the most important sources of EEG.
- EEG reflects the activity of layers of cortical neurons that have similar spatial orientation.
- Pyramidal cells of the cortex are the major contributor.
- Volume conduction: outward movement of ions from the brain sources.

The scalp electric field is tangential

The electric field, **E** ($\mu V/mm$), is related to the current density, **J** ($\mu A/mm^2$):

$$\mathbf{J}(\mathbf{r},t) = \sigma \mathbf{E}(\mathbf{r},t),$$

where σ (S/mm) is the electrical conductivity. We assume that

$$J_{tan} = \sigma_{tan} E_{tan}$$
 and $J_{radial} = \sigma_{radial} E_{radial}$.

Since $\sigma_{air} \approx$ 0, the electric field is tangential on the outer scalp surface:

$$\mathbf{E}^{\text{scalp}}(\mathbf{r},t) = \mathcal{E}_{\mathbf{r}}(\mathbf{r},t)\hat{\mathbf{r}} + \mathcal{E}_{\theta}(\mathbf{r},t)\hat{\theta} + \mathcal{E}_{\varphi}(\mathbf{r},t)\hat{\varphi}.$$

Therefore,

$$\mathbf{E}^{\mathrm{scalp}}(\mathbf{r},t) = -\vec{\nabla}_{\mathrm{surf}}V(\mathbf{r},t).$$

The divergence of E

$$\vec{\nabla}_{\mathrm{surf}} \cdot \mathbf{E} = -\vec{\nabla}_{\mathrm{surf}} \cdot \vec{\nabla}_{\mathrm{surf}} V = -\nabla_{\mathrm{surf}}^2 V.$$

Distributions due to three radial dipoles located 6.2 cm from the center of the head. (θ,ϕ) -coordinates are: $(75^\circ,230^\circ)$, $(65^\circ,55^\circ)$, and $(80^\circ,100^\circ)$. Brain, skull, and scalp were represented as concentric spheres of radii 8.0, 8.6, and 9.2 cm, respectively. The brain and scalp had the same resistivity of $300\,\Omega\cdot\text{cm}$ and the skull was 80 times more resistive.

(*) CARVALHAES & SUPPES, NEURAL COMPUTATION (2011)

Exp. I: Thirty-two CV syllables (128 channels)

				,		•	
							zi
pæ	tæ	bæ	gæ	fæ	sæ	væ	zæ
							zu
pa	ta	ba	ga	fa	sa	va	za

The vowels are like in: meet, cat, soon, spa.

Highest recognition rates (%)						Consonant Syllable Wowel						
Potential Laplacian				Electric Field Laplacian/Elec. Field (LEF)				lec.				
S1	44.0	12.2	36.4	57.0	19.8	45.8	58.0	17.6	37.8	66.0	22.6	43.1
S2	40.8	9.2	33.9	34.9	8.7	36.7	40.5	9.4	37.2	39.1	9.1	37.8
S3	31.2	7.9	35.8	32.8	8.3	35.8	36.0	8.4	37.7	37.7	9.0	37.3
S4	30.3	6.8	34.2	27.1	6.1	38.7	30.6	6.8	38.2	30.1	7.5	38.7
Avg.	36.9	9.3	35.3	40.0	11.7	39.9	42.9	11.3	37.7	45.7	13.2	39.6

S1 - 7169 trials; S2 - 3589 trials; S3 - 6273 trials; S4 - 4481 trials. Chance level: 12.5%; 3.1%; 25.0%.

Chance level. 12.5%, 5.1%; 25.0%

^(*) Rui Wang, PhD. Dissertation (2011)

Exp. II: Color-shape images Exp. III: Face and non-face images Exp. IV: Mental task

Exp. II: Nine color-shape images (32 channels)

Recog	nition rat	2700	2700 trials		
	Poten.	Laplac.	EF	LEF	
S1	57.3	82.1	82.5	87.5	
S2	42.2	50.8	66.5	68.9	
S3	35.7	59.1	61.3	70.0	
S4	50.3	63.4	67.0	73.3	
S5	59.1	71.8	76.6	81.8	
S6	53.9	58.1	66.2	71.1	
S7	55.0	55.9	66.4	72.2	
Avg.	50.5	63.0	69.5	75.0	

Chance level: 11.1%.

Exp. III: Seventy-two face and non-face images (128 channels)

	Recognition rates (%)			(%)	■Image Category			5186 trials	
	Potential		ntial	Laplacian		Elec. Field		LEF	
	S1	10.5	45.5	12.4	46.6	21.1	56.1	26.3	59.9
72 images	S2	8.2	49.7	11.0	53.5	14.5	59.4	21.4	65.7
6 categories:	S3	12.6	55.1	15.5	56.0	17.7	57.5	24.2	64.5
 human face 	S4	6.9	44.1	10.1	49.5	8.9	53.5	12.7	58.9
 human body 	S5	15.5	52.2	17.2	60.5	24.3	68.0	38.5	76.4
• animal face	S6	15.0	56.3	19.4	60.3	32.7	70.5	42.7	78.8
 animal body 	S7	11.6	59.0	14.0	60.7	17.4	65.3	25.7	72.8
 natural object 	S8	6.6	40.2	7.6	42.4	8.6	48.4	10.5	54.6
 artificial object 	S9	7.8	50.0	7.9	49.5	11.1	53.4	14.9	57.2
	S10	14.7	63.4	19.9	70.6	30.4	76.0	44.4	82.0
	Avg.	10.9	51.6	13.5	55.0	18.7	60.8	26.1	67.1

Chance level: 1.4%; 16.7%.

Using the Scalp Electric Field to Recognize EEG Signals

^(*) BLAIR KANESHIRO, IN PREPARATION (2012)

Exp. I: Consonant-vowel syllables Exp. II: Color-shape images Exp. III: Face and non-face images Exp. IV: Mental task

Exp. IV: Two-class mental task (64 channels)

High	600 trials				
	Potential	Laplacian	Elec. Field	LEF	LEF+PCA
S1	74.4	91.7	90.1	90.9	93.4
S2	70.2	75.2	72.7	71.9	80.2
S3	74.4	79.3	79.3	79.3	83.5
S4	72.5	78.3	82.5	81.7	88.3
S5	78.5	93.4	82.6	83.5	90.9
S6	57.5	75.0	70.8	68.3	72.5
S7	80.2	85.1	85.1	76.0	89.3
S8	76.9	81.0	83.5	82.6	90.9
S9	76.0	74.4	76.0	74.4	76.0
S10	82.6	82.6	84.3	76.0	90.9
S11	75.2	76.9	75.2	72.7	85.1
Avg.	74.3	81.4	81.1	77.6	85.5

Chance level: 50%.

Conclusions & Remarks

- The electric field was effective to reduce error in the recognition of phonemes, images, and mental states.
- The method is reference-free and worked for different electrode systems.
- Combination with PCA resulted in further improvement.
- The method is computationally efficient, involving only a linear transformation of the input signal.
- Estimates of the electric field can be improved by: (i) using a more realistic model of the head; (ii) determining the precise location of the electrodes; (iii) increasing the electrode density.