Ernest Hutten's book as being definitely superior to most of the similarly oriented books written by such English scientists as Eddington, Whittaker, or Hoyle. At no point is the book marred by a naive epistemology or by vague cosmological speculations—the besetting sins of many books on physics addressed to the layman.

There are, however, some general criticisms that I would like to make. The first is that the attempt to relate semantics to physics seems somewhat pretentious and premature. Any detailed application of semantics requires a formalized language, but, as the author repeatedly remarks, no such languages have yet been constructed for any substantial portion of physics. As a consequence the author's insistence on the relevance of semantics to physics leads to yet another nearly empty programmatic proposal in the philosophy of science. The author does not indicate a single clear result that might be obtained by such an application of semantics. In fact, once he turns to the analysis of particular physical concepts, the author's use of semantical notions is fairly superficial. A typical instance is his use of model in the vague sense of physics rather than in the precise and important sense of semantics.

What is surprising, in view of the author's interest in formalizing physics, is his neglect of the research which has been done on axiomatizing various theoretical portions of physics; only Carathéodory is mentioned. The author does not mention the work of Hamel, Hermes, Robb, Schnell, A. G. Walker, and others. Axiomatization of physical theory, as opposed to experimental work, may proceed in the standard mathematical manner within a set-theoretical framework and without recourse to semantics. The more modest aim of first axiomatizing theoretical physics in the sense just defined, which is the sense in which mathematicians axiomatize topology or the theory of Hilbert spaces, would seem to be a necessary prolegomena to any applications of semantics to the full corpus of physics, theoretical and experimental.

Following Carnap and other writers, the author distinguishes two kinds of probability: inductive probability or degree of confirmation, and probability as the limit of relative frequency. Concerning Hutten's generally sound discussion, I have two comments. One is that the reader is not made sufficiently aware of the severe difficulties which must be overcome by any adequate theory of inductive probability. And the second is that it is contrary to scientific practice to speak of the inductive probability of sentences on given evidence. This linguistic approach of philosophers unduly and unnecessarily isolates their work on the foundations of modern physics.

of probability from the mainstream of probability theory. The problems and results of inductive probability may all be formulated in the ordinary sample-space framework. Moreover, such a formulation emphasizes the fact that the fundamental problems of induction are problems of action or decision and not problems of language.

Patrick Suppes

Stanford University

October 1957